K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

1. Gọi 2 số cần tìm là a và b

+ Ta có : \(\frac{a}{3}=\frac{b}{5}\Rightarrow a=\frac{3b}{5}\)

+ Ta lại có : \(a^2+b^2=306\Rightarrow\left(\frac{3b}{5}\right)^2+b^2=306\)

\(\Rightarrow\frac{9}{25}b^2+b^2=306\Rightarrow\frac{34}{25}b^2=306\)

\(\Rightarrow b^2=225\Rightarrow b=15\) ( do \(b\in N\) ) \(\Rightarrow a=\frac{3b}{5}=9\)

Vậy a = 9, b = 15

2.+ ta có : \(n\in N\)* \(\Rightarrow\frac{1}{n}>0\)

+ \(\frac{1}{m}-\frac{1}{n}=\frac{1}{2}\Rightarrow\frac{1}{m}=\frac{1}{n}+\frac{1}{2}>\frac{1}{2}\)

\(\Rightarrow m< 2\) \(\Rightarrow m=1\) ( do \(m\in N\)* )

Thay vào tính được n = 2

23 tháng 11 2019

1, Gọi 2 số tự nhiên cần tìm là a,b

Tổng các bình phương của 2 số = 306 => \(a^2+b^2=306\)

a,b lần lượt tỉ lệ với 3 và 5 => \(\frac{a}{3}=\frac{b}{5}\Leftrightarrow\frac{a^2}{9}=\frac{b^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a^2}{9}=\frac{b^2}{25}=\frac{a^2+b^2}{9+25}=\frac{306}{34}=9\)

\(\Leftrightarrow\frac{a^2}{9}=9\Leftrightarrow a^2=81\Leftrightarrow a=9\)(thoả mãn)

\(\Leftrightarrow b^2=306-a^2=306-81=225\Leftrightarrow b=15\)(thoả mãn)

Vậy 2 số tự nhiên cần tìm là 9 và 15

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

23 tháng 10 2016

Bài 1:

Giải:

Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)

\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)

+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)

+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)

+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(6,2;9,8;8,2\right)\)

27 tháng 10 2016

Vậy còn mấy câu kja hì sao pạn???

DD
25 tháng 10 2021

Bài 1: 

Gọi hai số cần tìm là \(a,b\).

Hai số lần lượt tỉ lệ với \(4,7\)nên \(\frac{a}{4}=\frac{b}{7}\).

Đặt \(\frac{a}{4}=\frac{b}{7}=t\Leftrightarrow\hept{\begin{cases}a=4t\\b=7t\end{cases}}\)

\(ab=4t.7t=28t^2=112\Leftrightarrow t^2=4\Leftrightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với \(t=2\Rightarrow\hept{\begin{cases}a=2.4=8\\b=2.7=14\end{cases}}\)

Với \(t=-2\Rightarrow\hept{\begin{cases}a=-2.4=-8\\b=-2.7=-14\end{cases}}\).

DD
25 tháng 10 2021

Bài 2: 

Gọi hai số cần tìm là \(a,b\).

Hai số lần lượt tỉ lệ với \(3,4\)nên \(\frac{a}{3}=\frac{b}{4}\).

Đặt \(\frac{a}{3}=\frac{b}{4}=t\Leftrightarrow\hept{\begin{cases}a=3t\\b=4t\end{cases}}\)

\(ab=3t.4t=12t^2=48\Leftrightarrow t^2=4\Leftrightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với \(t=2\Rightarrow\hept{\begin{cases}a=2.3=6\\b=2.4=8\end{cases}}\)

Với \(t=-2\Rightarrow\hept{\begin{cases}a=-2.3=-6\\b=-2.4=-8\end{cases}}\).

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````