Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)chứng minh rằng
a)\(\frac{a}{a-b}\)=\(\frac{c}{c-d}\)
b)\(\frac{a}{b}=\frac{a+c}{b+d}\)
c)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
d)\(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)
f)\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số = nhau :
\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)
mấy bài kia cũng tương tự em ạ !
gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)
=> a=bk; c=dk
rồi thay vào các biểu thức