K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2023

loading...

Xét tứ giác SOAB có: \(\left\{{}\begin{matrix}\widehat{SAO}=90^o\\\widehat{SBO}=90^o\end{matrix}\right.\)

=> Tứ giác SOAB nội tiếp (tổng 2 góc đối = 180o).

=> 4 điểm S, A, O, B cùng thuộc 1 đường tròn.

góc SAO+góc SBO=180 độ

=>SAOB nội tiếp

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB và MA=MB

MO là phân giác của góc AMB

=>\(\widehat{AMO}=\dfrac{\widehat{AMB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔOAM vuông tại A có \(tanAMO=\dfrac{OA}{AM}\)

=>\(\dfrac{6}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)

=>\(AM=6\cdot\dfrac{3}{\sqrt{3}}=6\sqrt{3}\left(cm\right)\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

=>\(\widehat{MBA}=60^0\)

Gọi bán kính đường tròn nội tiếp ΔMAB là d

Diện tích tam giác MBA là:

\(S_{MBA}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB\)

\(=\dfrac{1}{2}\cdot6\sqrt{3}\cdot6\sqrt{3}\cdot sin60=27\sqrt{3}\left(cm^2\right)\)

Nửa chu vi tam giác MBA là:

\(p=\dfrac{6\sqrt{3}+6\sqrt{3}+6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)

Xét ΔMBA có \(S_{MBA}=p\cdot d\)

=>\(d=\dfrac{27\sqrt{3}}{3\sqrt{3}}=9\left(cm\right)\)

27 tháng 12 2021

a: Xét tứ giác MBOC có

\(\widehat{MBO}+\widehat{MCO}=180^0\)

Do đó: MBOC là tứ giác nội tiếp

1: góc OAS+góc OBS=90+90=180 độ

=>OASB nội tiép

2: Xét ΔSAC và ΔSDA có

góc SAC=góc SDA

góc ASC chung

=>ΔSAC đồng dạng với ΔSDA

=>SA/SD=SC/SA

=>SA^2=SD*SC=SA*SB

3: Xét (O) có

SA,SB là tiêp tuyến

=>SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS vuông góc AB tại I

=>SI*SO=SA^2=SC*SD

=>SI/SD=SC/SO

=>ΔSIC đồng dạng với ΔSDO