K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

đề sai

24 tháng 11 2019

P+48

phần nguyên tố cho p

n là số hậu nhe

tk mk ik

27 tháng 6 2017

bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7

7 tháng 11 2018

DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

25 tháng 1 2017

a, Ta có: p = 2 => p + 10 = 12 là hợp số

              p = 3 => p + 10 = 13

                            p + 20 = 23

Vậy p = 3 thỏa mãn yêu cầu

Giả sử p > 3 thì p sẽ có dạng:

p = 3k + 1 hoặc p = 3k + 2

  Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3

=> p + 20 là hợp số

  Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3

=> p + 10 là hợp số

Do đó: với p = 3 thỏa mãn yêu cầu đề bài

b, Ta có: p = 2 => p + 2 = 4 là hợp số

              p = 3 => p + 6 = 9 là hợp số

              p = 5 => p + 2 = 7

                            p + 6 = 11

                            p + 8 = 13

                            p + 14 = 19

Vậy p = 5 thỏa mãn

Giả sử p > 5 thì p sẽ có dạng:

p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4

  Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5

=> p + 14 là hợp số

  Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5

=> p + 8 là hợp số

  Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5

=> p + 2 là hợp số

  Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5

=> p + 6 là hợp số

Do đó: với p = 5 thỏa mãn yêu cầu bài toán

25 tháng 1 2017

a, p=3

b, p=5

đúng mà, bạn tk mk đi.

8 tháng 11 2015

a) p, p+2, p+4 nguyên tố? 
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố 

*p # 3: 
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố 
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố 

Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3 

Ê nhớ thưởng nha!

1 tháng 11 2015

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !

9 tháng 1 2015

Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm

9 tháng 1 2015

1) p=3

p=3

p=3

p=5

AH
Akai Haruma
Giáo viên
14 tháng 12 2023

Lời giải:

Nếu $p$ chia hết cho 5 thì do $p$ là số nguyên tố nên $p=5$

Khi đó, $p+2, p+6, p+8, p+14$ cũng là snt (thỏa mãn) 

Nếu $p$ chia 5 dư 1. Đặt $p=5k+1$

Khi đó: $p+14=5k+15=5(k+3)\vdots 5$. Mà $p+14>5$ nên không thể là snt (không tm) 

Nếu $p$ chia 5 dư 2. Đặt $p=5k+2$

Khi đó: $p+8=5k+10=5(k+2)\vdots 5$. Mà $p+8>5$ nên không thể là snt (không tm) 

Nếu $p$ chia 5 dư 3. Đặt $p=5k+3$

Khi đó: $p+2=5k+5=5(k+1)\vdots 5\Rightarrow p+2=5\Rightarrow p=3$. Khi đó $p+6=9$ không là snt (không tm) 

Nếu $p$ chia 5 dư 4. Đặt $p=5k+4$

Khi đó: $p+6=5k+10=5(k+2)\vdots 5$. Mà $p+6>5$ nên không thể là snt (không tm)

Vậy $p=5$