cho a ,b ,c là độ dài 3 cạnh tam giác . Chứng minh (a + b + c)^2 < 4(ab+ bc + ca)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
Dấu "=" ko xảy ra ??? xem lại đề
Theo bđt tam giác ta có :
\(a< b+c\)\(\Leftrightarrow\)\(a^2< ab+ac\)
\(b< c+a\)\(\Leftrightarrow\)\(b^2< bc+ab\)
\(c< a+b\)\(\Leftrightarrow\)\(c^2< ac+bc\)
Cộng theo vế từng bđt trên ta có :
\(a^2+b^2+c^2< ab+ac+bc+ab+ac+bc=2\left(ab+bc+ca\right)\) ( đpcm )
Chúc bạn học tốt ~
a) Vì a, b, c là độ dài 3 cạnh của một tam giác
⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)
⇒ a + c – b > 0 và a + b – c > 0
Ta có: (b – c)2 < a2
⇔ a2 – (b – c)2 > 0
⇔ (a – (b – c))(a + (b – c)) > 0
⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).
Vậy ta có (b – c)2 < a2 (1) (đpcm)
b) Chứng minh tương tự phần a) ta có :
( a – b)2 < c2 (2)
(c – a)2 < b2 (3)
Cộng ba bất đẳng thức (1), (2), (3) ta có:
(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2
⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2
⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2
⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).
a,b,c là độ dài 3 cạnh của 1 tam giác nên:
\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)
Cộng từng vế của các BĐT trên:
\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)
\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)