Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D.
1) Chứng minh rằng: ∆MEN vuông tại E. Từ đó chứng minh DE.DM = DN2
2) Từ O kẻ OI vuông góc với ME (I ∈ ME).
Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn.
3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O.
4) Chứng minh rằng: góc DEA = góc DAM
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 11 2023
a: Xét (O) có
ΔMEN nội tiếp
MN là đường kính
Do đó: ΔMEN vuông tại E
=>NE\(\perp\)ME tại E
=>NE\(\perp\)DM tại E
Xét ΔDNM vuông tại N có NE là đường cao
nên \(DE\cdot DM=DN^2\)
b: Xét tứ giác ONDI có
\(\widehat{OND}+\widehat{OID}=90^0+90^0=180^0\)
=>ODNI là tứ giác nội tiếp
=>O,D,N,I cùng thuộc một đường tròn
NN
22 tháng 8 2021
Kẻ OI AB ( I CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.
Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.
Ta có IO=CA+DB2 =MC+MD2 =DC2 là bán kính của đường tròn (I).
Do đó AB tiếp xúc với đường tròn đường kính CD.