T ÌM GIÁ trị của x thoả mãn: |2x+3|+|2x-1|=\(\frac{8}{3\left(x+1\right)^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+1=3\left(x+\frac{1}{3}\right)^2+1\ge1\Rightarrow Min=1\Leftrightarrow x=-\frac{1}{3}\)
2) \(2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2-2xy+y^2+3xy\right)-3\left(x^2-2xy+y^2+4xy\right)=\left(x-y\right)^2\left(12xy-12xy\right)=0\)
3) đặt \(2x-1=t\Rightarrow x^2=\frac{t+1}{2}^2\Leftrightarrow\left(t+2\right)^3-4\frac{t+1}{2}^2\left(t-2\right)-5=0\Leftrightarrow\left(t+2\right)^3-\left(t+1\right)^2\left(t-2\right)-5=0\)\(\Leftrightarrow t^3+6t^2+12t+8-t^3-2t^2+t+2t^2+4t+2=0\Leftrightarrow6t^2+16t+10=0\Leftrightarrow\left(t+1\right)\left(6t+10\right)=0\)
=> t=-1 hoặc t=-10/6 \(\Leftrightarrow2x-1=-1\Leftrightarrow x=0\) hoặc \(2x-1=-\frac{10}{6}\Leftrightarrow x=-\frac{1}{3}\)
\(PT\Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\sqrt{\dfrac{\dfrac{2x+1}{2}}{2}}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\dfrac{1}{2}\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow2\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow\sqrt{2x+1}=\dfrac{3}{4}\\ \Leftrightarrow2x+1=\dfrac{9}{16}\\ \Leftrightarrow2x=-\dfrac{7}{16}\\ \Leftrightarrow x=-\dfrac{7}{32}\\ \Leftrightarrow a=-\dfrac{7}{32}\\ \Leftrightarrow1-36a=1+36\cdot\dfrac{7}{32}=...\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)
\(\Leftrightarrow Q=\frac{x+1}{2x}\)
b) Để \(Q\inℤ\)
\(\Leftrightarrow x+1⋮2x\)
\(\Leftrightarrow2\left(x+1\right)⋮2x\)
\(\Leftrightarrow2x+2⋮2x\)
\(\Leftrightarrow2⋮2x\)
\(\Leftrightarrow2x\inƯ\left(2\right)\)
\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)
Mà \(x\inℤ\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)
Ta có: \(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\)(1)
Ta lại có: \(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)
=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\) (2)
Từ (1); (2) : \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)
<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow x=-1}\)(TM)
Vậy:...