K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Ta có \(\left(x+1\right)\left(x^2+x+1\right)=0\)=>\(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\end{cases}}\)Mà x^2+x+1>=0 với mọi x =>x=-1

2 tháng 12 2019

\(x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(2x^2+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x+1=0\Leftrightarrow x=-1\)

30 tháng 5 2015

x2 + x + 1 = 0

x . (x + 1) = -1 = -1 . 1

Vì x < x + 1 nên x = -1 => x + 1 \(\ne\) 1

Vậy x không tồn tại

x2+x+1=0

=>x.(x+1)=0-1

=>x.(x+1)=-1

ta có bảng sau

x+11-1
x theo x+10-2
x-11

vậy không có x

 

1: =>x^2+3x-4=0

=>(x+4)(x-1)=0

=>x=1 hoặc x=-4

2: =>2x-3y=1 và 3x=4y+2

=>2x-3y=1 và 3x-4y=2

=>x=2 và y=1

6 tháng 2 2016

Em mới học lớp 6 thôi . Đợi hai năm nữa em giải cho !

6 tháng 2 2016

ta co  |x+1| =x+1 khi x lon hon hoac bang -1 ; |x+1|= - (x+1) khi x nho hon -1                                                                                         th1 : x lon hon hoac bang 1 thi x^2+2x+2x+2-2=0 suy ra x=0 hoac x=-4                                                                                                  th2: x nho hon -1 thi x^2+2x-2x-2-2=0 suy ra x=2 hoac x=-2 

10 tháng 5 2018

\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)

\(\Leftrightarrow6x-2\ge15x\)

\(\Leftrightarrow x\le-\frac{2}{9}\)

Vậy \(x\le-\frac{2}{9}\)

18 tháng 5 2021

`x^3+1=2y,y^3+1=2x`

`=>x^3-y^3=2y-2x`

`<=>(x-y)(x^2+xy+y^2)+2(x-y)=0`

`<=>(x-y)(x^2+xy+y^2+2)=0`

Vì `x^2+xy+y^2+2>=2>0`

`=>x-y=0<=>x=y` thay vào bthức

`=>x^3+1=2x`

`<=>x^3-2x+1=0`

`<=>x^3-x^2+x^2-2x+1=0`

`<=>x^2(x-1)+(x-1)^2=0`

`<=>(x-1)(x^2+x-1)=0`

`+)x=1=>x=y=1`

`+)x^2+x-1=0`

`\Delta=1+4=5`

`=>x_1=(-1-sqrt5)/2,x_2=(-1+sqrt5)/2`

`=>x=y=(-1-sqrt5)/2,x=y=z(-1+sqrt5)/2`

Vậy `(x,y)=(1,1),((-1-sqrt5)/2,(-1-sqrt5)/2),((-1+sqrt5)/2,(-1+sqrt5)/2)`

a) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)

Suy ra: \(3x^2+7x-10=0\)

\(\Leftrightarrow3x^2-3x+10x-10=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)

21 tháng 2 2021

a/ \(\dfrac{3x^2+7x-10}{x}=0\)

\(< =>3x^2+7x-10=0\)

\(< =>3x^2+10x-3x-10=0\)

\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)

\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)

\(< =>\left(3x+10\right)\left(x-1\right)=0\)

\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)

Vậy tập nghiệm của .....

 

 

 

9 tháng 4 2017

(3x-1) (2x-3) (2x-3) (x-5) = 0

<=> (2x-3) [(3x-1) (x-5)]=0

<=> (2x-3) (3x-1-x-5) = 0

<=> ( 2x-3) (2x-4) =0

<=> 2x-3=0(1) hoặc 2x-4=0 (2)

(1) 2x-3=0 <=> x=3/2

(2) 2x-4=0 <=> x=2

vậy tập nghiệm của pt là s={3/2;2}

9 tháng 4 2017

cảm ơn ạ

21 tháng 4 2021

Mấy ý này bản chất ko khác nhau nhé, mình làm mẫu, bạn làm tương tự mấy ý kia nhé 

a, \(\left|5x\right|=x+2\)

Với \(x\ge0\)thì \(5x=x+2\Leftrightarrow x=\dfrac{1}{2}\)

Với \(x< 0\)thì \(5x=-x-2\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\)

b, \(\left|7x-3\right|-2x+6=0\Leftrightarrow\left|7x-3\right|=2x-6\)

Với \(x\ge\dfrac{3}{7}\)thì \(7x-3=2x-6\Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\)( ktm )

Với \(x< \dfrac{3}{7}\)thì \(7x-3=-2x+6\Leftrightarrow9x=9\Leftrightarrow x=1\)( ktm )

Vậy phương trình vô nghiệm