Giair phương trình:x^3+2x^2+2x+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + x + 1 = 0
x . (x + 1) = -1 = -1 . 1
Vì x < x + 1 nên x = -1 => x + 1 \(\ne\) 1
Vậy x không tồn tại
x2+x+1=0
=>x.(x+1)=0-1
=>x.(x+1)=-1
ta có bảng sau
x+1 | 1 | -1 |
x theo x+1 | 0 | -2 |
x | -1 | 1 |
vậy không có x
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)
\(\Leftrightarrow6x-2\ge15x\)
\(\Leftrightarrow x\le-\frac{2}{9}\)
Vậy \(x\le-\frac{2}{9}\)
`x^3+1=2y,y^3+1=2x`
`=>x^3-y^3=2y-2x`
`<=>(x-y)(x^2+xy+y^2)+2(x-y)=0`
`<=>(x-y)(x^2+xy+y^2+2)=0`
Vì `x^2+xy+y^2+2>=2>0`
`=>x-y=0<=>x=y` thay vào bthức
`=>x^3+1=2x`
`<=>x^3-2x+1=0`
`<=>x^3-x^2+x^2-2x+1=0`
`<=>x^2(x-1)+(x-1)^2=0`
`<=>(x-1)(x^2+x-1)=0`
`+)x=1=>x=y=1`
`+)x^2+x-1=0`
`\Delta=1+4=5`
`=>x_1=(-1-sqrt5)/2,x_2=(-1+sqrt5)/2`
`=>x=y=(-1-sqrt5)/2,x=y=z(-1+sqrt5)/2`
Vậy `(x,y)=(1,1),((-1-sqrt5)/2,(-1-sqrt5)/2),((-1+sqrt5)/2,(-1+sqrt5)/2)`
a) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)
Suy ra: \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)
a/ \(\dfrac{3x^2+7x-10}{x}=0\)
\(< =>3x^2+7x-10=0\)
\(< =>3x^2+10x-3x-10=0\)
\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)
\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)
\(< =>\left(3x+10\right)\left(x-1\right)=0\)
\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)
Vậy tập nghiệm của .....
(3x-1) (2x-3) (2x-3) (x-5) = 0
<=> (2x-3) [(3x-1) (x-5)]=0
<=> (2x-3) (3x-1-x-5) = 0
<=> ( 2x-3) (2x-4) =0
<=> 2x-3=0(1) hoặc 2x-4=0 (2)
(1) 2x-3=0 <=> x=3/2
(2) 2x-4=0 <=> x=2
vậy tập nghiệm của pt là s={3/2;2}
Mấy ý này bản chất ko khác nhau nhé, mình làm mẫu, bạn làm tương tự mấy ý kia nhé
a, \(\left|5x\right|=x+2\)
Với \(x\ge0\)thì \(5x=x+2\Leftrightarrow x=\dfrac{1}{2}\)
Với \(x< 0\)thì \(5x=-x-2\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\)
b, \(\left|7x-3\right|-2x+6=0\Leftrightarrow\left|7x-3\right|=2x-6\)
Với \(x\ge\dfrac{3}{7}\)thì \(7x-3=2x-6\Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\)( ktm )
Với \(x< \dfrac{3}{7}\)thì \(7x-3=-2x+6\Leftrightarrow9x=9\Leftrightarrow x=1\)( ktm )
Vậy phương trình vô nghiệm
Ta có \(\left(x+1\right)\left(x^2+x+1\right)=0\)=>\(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\end{cases}}\)Mà x^2+x+1>=0 với mọi x =>x=-1
\(x^3+2x^2+2x+1=0\)
\(\Leftrightarrow\left(x^3+1\right)+\left(2x^2+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x+1=0\Leftrightarrow x=-1\)