Tìm 2 số nguyên dương x,y biết rằng tổng ,hiệu ,tích của chúng tỉ lệ với 35:210:12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
Gọi hai số đó là : \(x\) và \(y\)
Theo đề bài , ta có :
\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)
\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)
\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)
Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)
\(\Rightarrow35y+210y=210x-35x\)
\(\Rightarrow245y=175x\)
\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)
Thay vào \(\left(2\right)\) , ta được :
\(210.\left(x-y\right)=12\left(xy\right)\)
\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)
\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)
\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)
\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)
\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)
\(\Rightarrow y=0\) ( vô lí )
\(\Rightarrow5-y=0\)
\(\Rightarrow y=5\)
Thay vào \(\left(3\right)\) , ta có :
\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)
Vậy \(x=7;y=5\)
Có thể bạn ghi sai đề chỗ 210, là 21 thì đúng hơn đó.
Theo đề bài, ta có: \(\frac{x+y}{35}=\frac{x-y}{21}=\frac{xy}{12}.\)(1)
Theo tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x+y}{35}=\frac{x-y}{21}=\frac{x+y+\left(x-y\right)}{35+21}=\frac{2x}{56}=\frac{x}{28}\)
do đó: \(\frac{x}{28}=\frac{xy}{12}\Leftrightarrow\frac{x}{xy}=\frac{28}{12}\Leftrightarrow\frac{1}{y}=\frac{28}{12}=\frac{7}{3}\Leftrightarrow y=\frac{3}{7}\)
thay \(y=\frac{3}{7}\) vào (1), ta có:
\(\frac{x+\frac{3}{7}}{35}=\frac{x-\frac{3}{7}}{21}\Rightarrow21\left(x+\frac{3}{7}\right)=35\left(x-\frac{3}{7}\right)\)
\(\Rightarrow21x+9=35x-15\)
\(\Rightarrow35x-21x=9+15\)
\(\Rightarrow x=\frac{24}{14}=\frac{12}{7}\)
Vậy \(\left(x;y\right)=\left(\frac{12}{7};\frac{3}{7}\right)\)
Học tốt nhé ^3^
Tiến_Về_Phía _Trước đề bài mình viết ở trên là đúng đó không sai đâu