Tính giai tri của biểu thức sau
\(\frac{9^9.32^9}{64^{ }^7.27^6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{64}-\sqrt{169}+\sqrt{9}=8-13+3=-2\)
\(4\sqrt{3}+\sqrt{27}-\sqrt{75}=4\sqrt{3}+3-5\sqrt{3}=\sqrt{3}\left(4+3-5\right)=2\sqrt{3}\)
\(\frac{15.27^7.3^8-9^{15}}{4^2.81^8}=\frac{3.5.\left(3^3\right)^7.3^8-\left(3^2\right)^{15}}{\left(2^2\right)^2.\left(3^4\right)^8}\)
\(=\frac{3.5.3^{21}.3^8-3^{30}}{2^4.3^{24}}=\frac{3^{32}.5-3^{30}}{2^4.3^{24}}\)
\(=\frac{3^{30}\left(3^2.5-1\right)}{2^4.3^{24}}=\frac{3^6.44}{2^4}=\frac{3^6.2^2.11}{2^4}=\frac{3^6.11}{2^2}\)
Ta có :\(\frac{15.27^7.3^8-9^{15}}{4^2.81^8}=\frac{3.5.\left(3^3\right)^7.3^8-\left(3^2\right)^{15}}{4^2.\left(3^4\right)^8}=\frac{3.5.3^{21}.3^8-3^{30}}{4^2.3^{32}}=\frac{3^{30}.5-3^{30}}{4^2.3^{32}}=\frac{3^{30}.4}{4^2.3^{32}}=\frac{1}{4.3^2}=\frac{1}{36}\)
=2+9+1+18+1+27+1+36+1+45+1+54+1+63+1+1
=9+9x2+9x3+9x4+9x5+9x6+9x7+9
=9x(1+2+3+4+5+6+7+1)
=9x29
\(A=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(A=81.\left[\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158}{711}\)
\(A=81.\left(\frac{12}{4}:\frac{5}{6}\right).\frac{2}{9}\)
\(A=81.3.\frac{6}{5}.\frac{2}{9}\)
\(A=\frac{324}{5}\)
Nhớ là: THANKS YOU VERY "MUCH" chứ không phải là THANKS YOU VERY "MATH"!!!
\(A=81.\frac{158158158}{711711711}.\frac{12.\left(\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\)
\(=81.\frac{158}{711}.\frac{12}{4}:\frac{5}{6}=\frac{1422}{79}.3.\frac{6}{5}=\frac{1422.3.6}{79.5}=\frac{25596}{395}\)
a: \(=\dfrac{2^5\cdot3^5\cdot2^{12}\cdot2^{16}\cdot5^{16}}{2^{30}\cdot3^{10}\cdot5^{16}}=\dfrac{2^{33}\cdot3^5}{2^{30}\cdot3^{10}}=\dfrac{8}{243}\)
c: \(=\dfrac{4^7\cdot3^{12}\cdot5^4+3^{12}\cdot5^6\cdot4^7}{2^{14}\cdot3^{14}\cdot5^4+2^{14}\cdot3^{14}\cdot5^6}\)
\(=\dfrac{2^{14}\cdot3^{12}\cdot5^4\left(1+25\right)}{2^{14}\cdot3^{14}\cdot5^4\left(1+25\right)}=\dfrac{1}{9}\)
Ta có : \(\frac{9^9.32^9}{64^7.27^6}=\frac{\left(3^2\right)^9.\left(2^5\right)^9}{\left(2^7\right)^7.\left(3^3\right)^6}=\frac{3^{18}.2^{45}}{2^{49}.3^{18}}=\frac{1}{2^4}=\frac{1}{16}\)