Tìm các số hữu tỷ a,b,c,d thỏa mãn điều kiện
\(\left\{{}\begin{matrix}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma akai haruma
\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
=> \(0\le a^2;b^4;c^6;d^8\le1\)
=> \(-1\le a;b;c;d\le1\)
=> \(a^{2016}\le a^2\); \(b^{2017}\le b^4\); \(c^{2018}\le c^6\); \(d^8\le d^{2019}\)
=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)
Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)
<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)
<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\); \(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\); \(\orbr{\begin{cases}d=0\\d=1\end{cases}}\); \(a^2+b^4+c^6+d^8=1\)
<=> \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).
Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thay các giá trị a, b, c, d vào M nhận đc giá trị M = 0
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0