Rút gọn phân thức sau:
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}.\)
Các bạn giúp mình với nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tử thức ta có
2x3-7x2-12x+45
= 2x3+5x2-12x2-30x+18x+45
= x2(2x+5)-6x(2x+5)+9(2x+5)
= (2x+5)(x2-6x+9)
= (2x+5)(x-3)2 (1)
Xét mẫu thức ta có
3x3-19x2+33x-9
= 3x3-x2-18x2+6x+27x-9
= x2(3x-1)-6x(3x-1)+9(3x-1)
= (3x-1)(x2-6x+9)
= (3x-1)(x-3)2 (2)
Thay (1) và (2) vào A ta được\(A=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)
Ta có tử bằng:2x3-7x2-12x+45
=(2x3-6x2)-(x2-3x)-(15x-45)
=2x2(x-3)-x(x-3)-15(x-3)
=(x-3)(2x2-x-15)
=(x-3)(2x2-6x+5x-15)
=(x-3)2(2x+5) (1)
Ta có mẫu bằng:3x3-19x2+33x-9
=(3x3-x2)-(19x2-6x)+(27x-9)
=x2(3x-1)-6x(3x-1)+9(3x-1)
=(3x-1)(x2-6x+9)
=(3x-1)(x-3)2 (2)
Thay (1) và (2) vào phân thức ,ta có:
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}=\frac{2x+5}{3x-1}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
\(=\frac{\left(x-\frac{2}{5}\right)\left(x+3\right)}{\left(x+\frac{1}{3}\right)\left(x+3\right)}\)
\(=\frac{x-\frac{2}{5}}{x+\frac{1}{3}}\)
=\(\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
=\(\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
=\(\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
=\(\frac{2x^2-6x+5x-15}{3x^2-9x-x+3}\)
=\(\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
=\(\frac{2x+5}{3x-1}\)
a, Để phân thức trên có nghĩa thì:
\(3x^3-19x^2+33x-9\ne0\)
\(\Rightarrow3x^3-9x^2-10x^2+30x+3x-9\ne0\)
\(\Rightarrow3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)\ne0\)
\(\Rightarrow\left(x-3\right)\left(3x^2-10x+3\right)\ne0\)
\(\Rightarrow\left(x-3\right).\left[3x^2-9x-x+3\right]\ne0\)
\(\Rightarrow\left(x-3\right)\left[3x\left(x-3\right)-\left(x-3\right)\right]\ne0\)
\(\Rightarrow\left(x-3\right)^2.\left(3x-1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x-3\ne0\\3x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne3\\x\ne\frac{1}{3}\end{cases}}}\)
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
a, Ra đáp án luôn nha
B=(2x+5)/(3x-1)
b,Để B>0 thì 2x+5 và 3x-1 phải cùng dấu
Đáp án : x khác 0;-1;-2
Lời giải:
Ta có:
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{\text{TS}}{\text{MS}}\)
Xét \(\text{TS}=2x^2(x-3)-x(x-3)-15(x-3)\)
\(=(x-3)(2x^2-x-15)=(x-3)[2x(x-3)+5(x-3)]\)
\(=(x-3)(x-3)(2x+5)=(x-3)^2(2x+5)\)
Xét \(\text{MS}=3x^2(x-3)-10x(x-3)+3(x-3)\)
\(=(x-3)(3x^2-10x+3)=(x-3)[3x(x-3)-(x-3)]\)
\(=(x-3)(x-3)(3x-1)=(x-3)^2(3x-1)\)
Do đó:
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(x-3)^2(3x-1)}=\frac{2x+5}{3x-1}\)
Tử: \(2x^3-7x^2-12x+45\)
\(=2x^3-12x^2+5x^2+18x-30+45\)
\(=2x^3-12x^2+18x+5x^2-30x+45\)
\(=2x\left(x^2-6x+9\right)+5\left(x^2-6x+9\right)\)
\(=\left(2x+5\right)\left(x-3\right)^2\) \(\left(1\right)\)
Mẫu: \(3x^3-19x^2+33x-9\)
\(=3x^3-18x^2-x^2+27x+6x-9\)
\(=3x^3-18x^2+27x-x^2+6x-9\)
\(=3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)\)
\(=\left(3x-1\right)\left(x-3\right)^2\) \(\left(2\right)\)
Từ (1) và (2) ta được: \(\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)
(Nghĩ vậy chứ cũng không chắc lắm)
Đặt \(A=\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
\(=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-6x+5x-15}{3x^2-x-9x+3}\)
\(=\frac{2x\left(x-3\right)+5\left(x-3\right)}{x\left(3x-1\right)-3\left(3x-1\right)}\)
\(=\frac{\left(x-3\right)\left(2x+5\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
@Băng Băng 2k6 Đúng rồi đấy ! Học giỏi lắm !