CMR 3^2n+2 + 2^6n+1 chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6^2n+ 3^(n+2)+ 3^n = 6^2n + 3^n x 3^2+ 3^n = 6^2n + 3^n x 9 + 3^n = 6^2n + 3^n x 10
6^2n + 3^n x 10 dd 6^2n + 3^n x (-1) dd 3^n x ( 3^n x 2^2n) - 3^n dd 3^n x (3^n x 4^n -1)( mod 11)
(3^n x 4^n -1) dd 12^n -1 dd 1^n - 1 dd 0
=>6^2n + 3^(n+2)+ 3^n dd 0(mod 11)
=> dpcm
(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57 (1)
vì n là số tự nhiên ko chia hết cho 5
suy ra n = 1;2;3;4;6...
suy ra n^4 - 1 chắc chắn chia hết cho 5 (2)
từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)
a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)6 \(\forall\)x \(\in\)Z
b) (n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)5 \(\forall\)x \(\in\)Z
c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)2 \(\forall\)x \(\in\)Z
d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)x \(\in\)Z
Đặt A= \(2^{2n+1}\)
Ta có:\(2^{2n+1}\)\(⋮\)2
\(2^{2n+1}\)= \(4^n\).2\(\equiv\)2(mod 3)
\(\Rightarrow\)\(\hept{\begin{cases}A⋮2\\A-2⋮3\end{cases}}\)
\(\Rightarrow\)A-2\(⋮\)6
\(\Rightarrow\)A=6k+2
Thay vào:\(2^{2^{2n+1}}\)=\(2^{6k+2}\)\(\equiv\)4(mod 7)
\(2^{2^{2n+1}}\)+3\(\equiv\)4+3(mod7)
\(\equiv\)0(mod 7)\(\Rightarrow\)\(2^{2^{2n+1}}\)+3\(⋮\)7
3^2n+2+2^6n+1=9^n.3^2+54^n.2=9^n.9+9^n.2-9^n.2+54^n.2=9^n(9+2)+2(54^n-9^n)
ta có 9^n(9+2) chia hết cho 11 (1)
2(54^n-9^n) chia hết cho (54-9) =>2(54^n-9^n) chia hết cho 11 (2)
từ (1) và (2) =>3^2n+2+2^6n+1 chia hết cho 11