cho A= 2 + 2mũ 2 + 2 mũ 3 +....+ 2 mũ 100
Hãy viết A+2 dưới dạng 1 lũy thừa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+....+2^{30}\)
\(2.A=2+2^2+2^3+2^4+...+2^{30}\)
\(2.A-A=\left(2+2^2+2^3+2^4+...+2^{31}\right)-\left(1+2+2^2+2^3+...+2^{30}\right)\)
\(A=2^{31}-1\)
\(\Rightarrow A+1=2^{31}-1+1\)
\(\Rightarrow A+1=2^{31}\)
\(A=1+3+3^2+...+3^{41}\)
\(3A=3+3^2+3^3+...+3^{42}\)
\(3A-A=3+3^2+...+3^{42}-1-3-...-3^{41}\)
\(2A=3^{42}-1\)
\(A=\dfrac{3^{42}-1}{2}\)
Ta có: \(2A+1\)
\(=2\cdot\dfrac{3^{42}-1}{2}+1\)
\(=3^{42}-1+1\)
\(=3^{42}\)
\(=\left(3^2\right)^{21}\)
\(=9^{21}\)
\(A=1+2+2^2+...+2^{30}\)
\(2A=2+2^2+2^3+...+2^{31}\)
\(2A-A=\left(2+2^2+2^3+...+2^{31}\right)-\left(1+2+2^2+...+2^{30}\right)\)
\(A=2^{31}-1\)
\(A+1=2^{31}\)
a: \(A=8^2\cdot32^4=2^6\cdot2^{20}=2^{26}\)
b: \(B=27^3\cdot9^4\cdot243=3^9\cdot3^8\cdot3^5=3^{22}\)
\(2^3\cdot2^2\cdot2^x\cdot x^5\cdot=2^{5+x}\cdot x^5\)
\(10^2\cdot2^{10}\cdot10^3\cdot10^5=10^{10}\cdot2^{10}=2^{10}\cdot5^{10}\cdot2^{10}=4^{10}\cdot5^{10}=20^{10}\)
\(a^3\cdot a^2\cdot a^5=a^{3+2+5}=a^{10}\)
P/s: Mình chỉ hiểu ý bạn như này!
\(16^2:4^2\)
\(=\left(4^2\right)^2:4^2\)
\(=4^4:4^2\)
\(=4^{4-2}\)
\(=4^2\)
==========
\(25^5:5^2\)
\(=\left(5^2\right)^5:5^2\)
\(=5^{10}:5^2\)
\(=5^{10-2}\)
\(=5^8\)
============
\(9^8:3^2\)
\(=\left(3^2\right)^8:3^2\)
\(=3^{16}:3^2\)
\(=3^{16-2}\)
\(=3^{14}\)
===========
\(a^6:a\)
\(=a^{6-1}\)
\(=a^5\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=2^{101}-2\)
Hay \(A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
_Học tốt_
bạn trả lời quá chậm