tìm số tự nhiên â sao cho a-1 và a-5 đều là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a - 6 ; a + 6 là số chính phương nên đặt a - 6 = m2; a + 6 = n2
=> n2 - m2 = 12
=> (n - m).(n + m) = 12
Nhận xét: (n - m) + (n + m) = 2n là số chẵn nên n - m và n + m cùng tính chẵn lẻ. hơn nữa, m < n
=> n - m = 2; n + m = 6
=> 2n = 2 + 6 = 8 => n = 4
m = 4 - 2 = 2
Vậy a - 6 = 22 = 4 => a = 10
Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.
Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)
$\Rightarrow 2a^2-57\equiv 1\pmod 8$
$\Rightarrow 2a^2\equiv 58\pmod 8$
$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$
(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)
Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.
Vì \(n\)là số tự nhiên có 2 chữ số
\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)
Vì \(2n+1\)là số chính phương lẻ
\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)
\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)
Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:
+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)
+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)
+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)
+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)
+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)
Vậy \(n=40\)
Chúc bn hok tốt ^_^
Đặt: a+15=\(m^2\); a-1=\(n^2\)(m khác n). Nên a+15-(a-1)=\(m^2\)-\(n^2\)=\(m^2\)+mn-mn-\(n^2\)=m(m+n)-n(m+n)=(m-n)(m+n)
Suy ra: 16=(m+n)(m-n) Mà:16=1.16=2.8=(-1)(-16)=(-2)(-8) ((m+n)(m-n) không thể bằng 4.4 vì m khác n)
Từ đó ta có bảng sau:
m+n | ví dụ:8 |
m-n | 2 |
a | 10(nhận) |
người đọc tự giải tiếp.
Từ đó ta có đáp số.........
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử 17a+8=x2⇒17a−17+25=x2⇒17(a−1)=x2−25⇒17(a−1)=(x−5)(x+5)17a+8=x2⇒17a−17+25=x2⇒17(a−1)=x2−25⇒17(a−1)=(x−5)(x+5)
⇒(x−5);(x+5)⋮17⇒(x−5);(x+5)⋮17
⇒x=17n±5⇒a=17n2±10n+1