(2/3.x-4/9).(1/2+-3/7.x)=0
Làm giúp mik vs.Mik cần gấp!!!⚽
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left|x+\dfrac{4}{9}\right|=\dfrac{3}{2}+\dfrac{1}{2}=2\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{4}{9}=2\\x+\dfrac{4}{9}=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{14}{9}\\x=-\dfrac{22}{9}\end{matrix}\right.\\ b,\Rightarrow\left\{{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)
a) \(\left|x+\dfrac{4}{9}\right|-\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Rightarrow\left|x+\dfrac{4}{9}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{4}{9}=2\\x+\dfrac{4}{9}=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{14}{9}\\x=-\dfrac{22}{9}\end{matrix}\right.\)
b) \(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)
a) 5^x=5^78:5^14(lấy 78-14)
5^x=5^64
=> x=64
b) 7^x.7^2=7^21
7^x=7^21:7^2
7^x=7^19
=> x=19
a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\)
b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\)
\(\dfrac{x}{3}=\dfrac{-14}{15}\)
\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)
\(x=\dfrac{-2}{7}+\dfrac{9}{7}\)
\(x=1\)
1) = \(\frac{3}{5}\)
2) =\(\frac{6}{7}\)
3)\(\frac{9}{13}\)
4)\(\frac{4}{13}\)
a: \(x+\dfrac{3}{9}=\dfrac{7}{6}\cdot\dfrac{2}{3}\)
=>\(x+\dfrac{1}{3}=\dfrac{14}{18}=\dfrac{7}{9}\)
=>\(x=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{7}{9}-\dfrac{3}{9}=\dfrac{4}{9}\)
b: \(x-\dfrac{2}{3}=\dfrac{1}{8}:\dfrac{5}{4}\)
=>\(x-\dfrac{2}{3}=\dfrac{1}{8}\cdot\dfrac{4}{5}=\dfrac{1}{10}\)
=>\(x=\dfrac{1}{10}+\dfrac{2}{3}=\dfrac{3+20}{30}=\dfrac{23}{30}\)
Ta có: \(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}-\dfrac{3}{7}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\\dfrac{3}{7}x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{7}{6}\end{matrix}\right.\)