Cho K=10^28+8. Chứng tỏ K chia hết cho 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chia hết cho 72 là chia hết cho 9 và 8.
Ta có 1028 + 8 = 100...0 (28 chữ số 0) + 8 có tổng các chữ số là 1 + 0 + ... +0 + 8 = 9 chia hết cho 9.
1028 + 8 có 3 chữ số tận cùng là 008 chia hết cho 8.
=> 1028 + 8 chia hết cho 72
Lời giải:
$10^{28}+8=2^{28}.5^{28}+8=2^3.2^{25}.5^{28}+8=8.2^{25}.5^{28}+8$
$=8(2^{25}.5^{28}+1)\vdots 8(1)$
$10^{28}+8\equiv 1^{28}+8\equiv 1+8\equiv 9\equiv 0\pmod 9$
$\Rightarrow 10^{28}+8\vdots 9(2)$
Từ $(1); (2)\Rightarrow 10^{28}+8\vdots (8.9)$ hay $10^{28}+8\vdots 72$.
72=9.8
1028+8=1000000000000..00000( có 28 số 0 ) +8
= 100000000...008 có 27 số 0
có tận cùng là 008 nên chia hết cho 8
1+0+0+0+...+0+0+8=9 tổng bằng 9 nên chia hết cho 9
vậy 1028+8 chia hết cho 9 và 8 => 1028+8 chia hết cho 72
de 1028 + 8 chia het cho 72 nen 1028 + 8 chia het cho 9;8
ta co : 1028 + 8 =1000...00 ( 28 chu so 0 ) + 8
co ba chu so tan cung la 008 chia het cho 8 nen 1028 + 8 chia het cho 8
vi 1028+ 8 co tong cac chu so chia het cho 9 nen 1028 + 8 chia het cho 9
vi 1028 + 8 chia het cho 9;8 nen 1028 + 8 chia het cho 72
Ta có:
A=1028+8=(2.5)28+8=228.528+8=23.225.528+8=8.(225.528+1)
=> A chia hết cho 8. (1)
Lại có:
A=1028+8=100...008 (27 chữ số 0)
Tổng các số hạng của A là: 1+27.0+8=9
=> A chia hết cho 9 (2)
Từ (1) và (2) suy ra: A chia hết cho 8.9=72
CMR:
a) F= 10^28+8 chia hết cho 72.
b) J= 10^n+18n-1 chia hết cho 27.
c) K= 10^n+72n-1 chia hết cho 81.
a) Ta có :
\(72=8.9\)
Ta thấy :
\(10^{28}⋮8\)
\(8⋮8\)
\(\Rightarrow10^{28}+8⋮8\)
Tổng các chữ số của \(10^{28}=1\)
Tổng các chữ số của \(8=8\)
\(\Rightarrow\)Tổng các chữ số của \(10^{28}+8=1+8=9⋮9\)
\(\Rightarrow10^{28}⋮8;9\)
\(\Rightarrow10^{28}⋮72\)
\(\Rightarrow F⋮72\left(đpcm\right)\)
b) Ta có :
\(10^n+18n-1=10^n-1+18n=999...9\)( n chữ số 9 ) \(+18n\)
\(=9\left(111....1+2n\right)\)( n chữ số 1 )
Xét \(111...1+2n=111...1-n+3n\)
Dễ thấy tổng các chữ số của \(111...1\)là n
\(\Rightarrow111...1-n⋮3\)
\(\Rightarrow111...1-n+3n⋮3\)
\(\Rightarrow10^n+18n-1⋮27\)
\(\Rightarrow J⋮27\left(đpcm\right)\)
c) Ta có :
\(K=10^n+72n-1=10^n-1+72n\)
\(10^n-1=999...9\)( n - 1 chữ số 9 )
\(=9\left(111...1\right)\)( n chữ số 1 )
\(K=10^n-1+72n=9\left(111...1\right)+72n\)
\(\Rightarrow K:9=111...1+8n=111...1-n+9n\)
Ta thấy :
\(111...1\)( n chữ số 1 ) có tổng các chữ số là n
\(\Rightarrow111...1-n⋮9\)
\(\Rightarrow K:9=111...1-n+9n⋮9\)
\(\Rightarrow K⋮81\left(đpcm\right)\)
Ta có : 72 = 8 . 9
Để 1028 + 8 chia hết cho 72 thì 1028 + 8 chia hết cho 8 và 9
Lại có : 1028 + 8 = 100......00 + 8 = 100......08 ( có 26 chữ số 0)
Vì 100.....08 có tổng số chữ số là 9 chia hết cho 9 nên 100.....08 chia hết cho 9 hay 1028 + 8 chia hết cho 9 (1)
Mà 100.....08 có 3 c/s tận cùng là 008 chia hết cho 8 nên 100......08 chia hết cho 8 hay 1028 + 8 chia hết cho 8 (2)
Từ (1) và (2) mà (8,9) = 1 nên 1028 + 8 chia hết cho 72 (Điều phải chứng tỏ)
Ủng hộ mk nha cảm ơn nhìu!!!
ta có 10 ^ 28 + 8 chia hết cho 72 \(\Leftrightarrow\)10 ^ 28 + 8 chia hết cho 8 và 9
vì ba chữ số tận cùng chia hết nên 008 chia hết cho 8
vì tổng các chữ số cộng lại sẽ chia hết cho 9 nên 10 ^ 28 + 8 có tổng bằng 9 nên chia hết cho 9
Vậy 10^28+8 chia hết cho 72
(BÀI ĐÂY ĐÚNG VÌ THẦY GIÁO MÌNH GIẢI CHO MÌNH RỒI)