K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF // BC, EF = 1/2  BC.

Xét tam giác BDC có: HB = HD, GD = GC (gt)

Nên HG // BC, HG =  1/2  BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

c)  EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC

1 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay BMNC là hình thang

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

16 tháng 11 2021

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

16 tháng 11 2021

Amazing 

 

16 tháng 11 2018

B D V N M K E C

a) Xét tứ giác ADME có :

Góc A = 90( tam giác ABC vuông tại A )

Góc D = 900 ( MD vuông góc AB )

Góc E = 900 ( ME vuông góc AC )

Do đó tứ giác ADME là hình chữ nhật

b) Chứng minh đúng D, E là trung điểm của AB ; AC

Chứng minh đúng DE là đường trung bình của tam giác 

ABC nên DE song song và \(DE=\frac{BC}{2}\)

Cho nên DE song song với BM và DE = BM

=> Tứ giác BDME là hình bình hành

c) Xét tứ giác AMCF có :

E là trung điểm MF ( vì M đối xứng với F qua E )

Mà E là trung điểm của AC ( cmt )

Nên tứ giác AMCF là hình bình hành 

Ta có AC vuông góc MF ( vì ME vuông góc AC )

Do đó tứ giác AMCF là hình thoi

d) Chứng minh đúng tứ giác ABNE là hình chữ nhật

Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE

trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE

nên \(KO=\frac{BE}{2}\)

mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)

trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN

nên tam giác AKN vuông tại A 

Vậy AK vuông góc KN

5 tháng 12 2018

$\in $

29 tháng 11 2023

Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.

 

a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.

 

b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:

 

- AD = DC (vì D là trung điểm của BC)

- AE = EB (vì E là trung điểm của AB)

- AF = FC (vì F là trung điểm của AC)

 

Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.

 

c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.

 

- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.

- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.

 

Do đó, ta có AM = AN.

 

- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)

- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)

 

Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.

 

Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.

 

Vậy ta đã chứng minh được M đối xứng với N qua A.

2 tháng 8 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1/2 AB; AF = 1/2 AC

Nên AE = AF ⇒ AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.