cho hình chữ nhật ABCD có độ dài các số nguyên và bình phương độ dài đường chéo chia hết cho diện tích của nó. Chứng minh ABCD là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường chéo BD là:
40×35=24(cm)
Diện tích hình thoi ABCD là:
40×24:2=480( c m 2 )
Vì hình chữ nhật GHIK có diện tích bằng diện tích hình thoi ABCD nên diện tích hình chữ nhật GHIK là 480 c m 2 .
Chiều dài hình chữ nhật là:
480:15=32(cm)
Chu vi hình chữ nhật là:
(32+15)×2=94(cm)
Đáp số: 94cm.
Vậy đáp án đúng điền vào ô trống là 94.
Ta có: Bình phương độ dài đường chéo của một hình chữ nhật là: \({5^2} + {8^2} = 25 + 64 = 89\)
Độ dài đường chéo của một hình chữ nhật là: \(\sqrt {89} = 9,43398...\)(dm)
Làm tròn kết quả này đến hàng phần mười, ta được: 9,4 dm
Chú ý: Độ dài đường chéo của một hình chữ nhật bằng căn bậc hai số học của tổng các bình phương độ dài hai cạnh của nó
Độ dài đường chéo của hình chữ nhật là:
\(\sqrt{7^2+6^2}=\sqrt{49+36}=\sqrt{85}\simeq9,2\left(dm\right)\)
giải cho mình có lời giải nhé bạn nào làm được mình sẽ k cho
a, diện tích hình vuông ABCD là
36 : 2 = 18 ( m 2)
b, diện tích hình chữ nhật ABMN là
18 x 3 = 54 (m 2)
diện tích hình chữ nhật ABCD là
36 x 54 =1944 (m 2)
cậu tự đáp số nha
nhớ m 2 là mét vuông đó nha
a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)
Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)
Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.
b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung
EHB=CHB=90 (gt)
EH=EC(H là trung điểm của EC)
Vậy tam giác EBH=tam giac CBH (cgv-cgv)
=>BEH=BCH ; EBH=CBH
Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)
Co BCE+ECG=BCG
Ma BCG=90(ABCD là hcn); BCE=45(cmt)
=> ECG=45
Xét tam giác EGC có:EGC+GEC+ECG=180
=> EGC=180-(GEC+ECG)
=180-(90+45)=45 (4)
Tu (3)$(4) => BEG=90
c)Tu CM