Cho A= \(3+3^2+3^3+....+3^{2019}\).Tìm số tự nhiên n sao cho \(2A+3=3^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta có: 2A + 3 = 34n+1
= 3101 - 3 + 1 = 34n+1
= 3101 = 34n+1
=> 4n + 1 =101
4n = 101 - 1
4n = 100
n = 100 : 4
n = 25
A = 3 + 32 + 33 + 34 +......+ 3100
3A = 32 + 33 + 34+.........+ 3100+ 3101
3A - A = 3101 - 3
2A = 3101 - 3
2A + 3 = 3101 - 3 + 3 = 3101
2A + 3 = 34n+1 ⇔ 3101 = 34n+1
101 = 4n + 1
4n = 101 - 1
4n = 100
n = 100 : 4
n = 25
Ta có :
A=3+32+...+32015
=> 3A-A=32+33+...+32016- (3+32+...+32015)
=>2A=32016-3
lại có: 2A+3=3n
=>32016-3+3=3n
=>32016=3n
=>n=2016
Vậy n=2016
\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)
\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)
\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)
\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)
\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow n=2021\).
Giải \(\left(2\right)\):
- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm.
- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định.
- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm.
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
Ta có \(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(2A=3^{101}-3\)
Ta có \(2A+3=3^n\)
hay \(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(n=101\)
A=3+32+33+.....+3100
3a=3.(3+32+33+....+3100)
3A=32+33+34+....+3101
3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)
2A=3101-3
2A+3=3101-3+3
2A+3=3101
3n=3101
=>n\(\in\)(101)
Chúc bn học tốt
A = 3 + 32 + 33 +...+32019
-> 3A = 3 (3 + 32 + 33 +...+32019)
-> 3A = 32 + 33 + 34 +...+32020
-> 3A - A = (32 + 33 + 34 +...+ 32020) - (3 + 32 + 33 +...+32019)
-> 2A = 32020 - 3
\(\rightarrow A=\frac{3^{2020}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\frac{3^{2020}-3}{2}+3=3^n\)
\(\Rightarrow3^{2020}-3+3=3^n\)
=> 32020 = 3n => n = 2020
Trl:
\(A=3+3^2+3^3+...+3^{2018}\)
\(3A=3^2+3^3+3^4+...+3^{2017}+3^{2018}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}\)
\(\Rightarrow n=101\)
Vậy n = 101
Hc tốt