Cho hai số nguyên a và b . Chứng minh rằng 5a+2b chia hết cho 17 khi và chỉ khi 9a+7b chia hết cho 17
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
2
C
11 tháng 1 2020
\(5a+2b⋮17\)
\(\Rightarrow60a+24b⋮17\)
\(\Rightarrow\left(51a+17b\right)+\left(9a+7b\right)⋮17\)
Do \(51a+17b⋮17\Rightarrow9a+7b⋮17\Rightarrowđpcm\)
NT
2
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
16 tháng 12 2023
\(9a+7b⋮17\Rightarrow3\left(9a+7b\right)=27a+21b⋮17\)
\(17a+17b⋮17\)
\(\Rightarrow27a+21b-17a-17b=10a+4b=2\left(5a+2b\right)⋮17\)
\(\Rightarrow5a+2b⋮17\)
NQ
1
16 tháng 10 2023
Ta có: \(5\cdot\left(5a+2b\right)+\left(9a+7b\right)=25a+10b+9a+7b=34a+17b\)
\(\Rightarrow34a+17b=17\left(2a+b\right)⋮17\)
Do đó: \(\left(5a+2b\right)⋮17\Rightarrow\left(9a+7b\right)⋮17\)
HC
27 tháng 3 2017
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
NT
0
T
0