giả sử (x0,y0) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x^2+y^2=25\\x+y-xy=-5\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>2x+6y=2m+2 và 2x-y=7
=>7y=2m-5 và 2x-y=7
=>y=2/7m-5/7 và 2x=y+7
=>y=2/7m-5/7 và 2x=2/7m+30/7
=>x=1/7m+15/7 và y=2/7m-5/7
x0+2y0 bằng gì bạn ơi?
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=12\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(\left\{{}\begin{matrix}x^2+y^2=25\\x.y=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=25\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{10}{y}\right)^2+y^2=25\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{100}{y^2}+y^2=25\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}100+y^4-25y^2=0\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y^2=20\\y^2=5\end{matrix}\right.\\x=\dfrac{10}{y}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=\pm\sqrt{20}\\y=\pm\sqrt{5}\end{matrix}\right.\\x=\dfrac{10}{y}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\sqrt{20};x=\sqrt{5}\\y=-\sqrt{20};x=-\sqrt{5}\\y=-\sqrt{5};x=-\sqrt{20}\\y=\sqrt{5};x=\sqrt{20}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)
\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)
\(\Leftrightarrow2xy=3m^2-6m+4\)
\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)
\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)
\("="\Leftrightarrow m=1\)
đặt x+y = u ; xy = v đk: u2 ≥ 4v
\(\left\{{}\begin{matrix}u+v=5\\u^2-v=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u^2+u-12=0\left(1\right)\\u+v=5\left(2\right)\end{matrix}\right.\)
từ pt 1 => \(\left[{}\begin{matrix}u=-4\\u=3\end{matrix}\right.\)
nghiệm u = - 4 loại
u = 3 nhận => v = 2
<=> x+y = 3 ; xy = 2
đặt x+y = S ; xy = P đk: S2 ≥ 4P
=> x và y là nghiệm của phương trình
X2 - SX + P = 0
= X2 - 3X + 2 = 0
=> \(\left[{}\begin{matrix}X=2\\X=1\end{matrix}\right.\)
vậy (x;y) = {(1;2);(2;1)}