CMR:\(\left(-2007\right)^{2004}-\left(-2003\right)^{2004}\) chia het cho + 2 va + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề\(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)
Đặt \(2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2006\right)+1=A\)
Ta có:
\(A=2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=\left(2005-1\right)\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=2005\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=\left(2005^{2007}+2005^{2006}+2005^{2005}+...+2005^2+2005\right)\)\(-\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005+1\right)+1\)
\(=2005^{2007}⋮2005^{2007}\left(dpcm\right)\)
a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)
\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)
\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)
\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)
\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)
\(=\frac{2-\frac{3}{4}}{4}\)
\(=\frac{1}{2.4}\)
\(=\frac{1}{8}\)
b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)
\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)
\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)
\(=\frac{16056050}{8028025}\)
= 2
Giả sử tồn tại a,b∈Za,b∈Z thỏa mãn ycđb
ĐKĐB ⇔\(a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}\)
⇔\(\left(a^2+2b^2-2004\right)=\sqrt{2}\left(2003-2ab\right)\)
⇔\(\sqrt{2}=\dfrac{a^2+2b^2-2004}{2003-2ab}\left(1\right)\)
Với a,b nguyên thì \(\dfrac{a^2+2b^2-2004}{2003-2ab}\) là số hữu tỉ.
Mà √22 là số vô tỉ (đây là bài toán quen thuộc)
Do đó \(\left(1\right)\) vô lý, hay điều giả sử là sai, tức là không tồn tại a,b∈Z thỏa mãn đkđb.
Lời giải:
Giả sử tồn tại $a,b\in\mathbb{Z}$ thỏa mãn ycđb
ĐKĐB $\Leftrightarrow a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}$
$\Leftrightarrow (a^2+2b^2-2004)=\sqrt{2}(2003-2ab)$
$\Leftrightarrow \sqrt{2}=\frac{a^2+2b^2-2004}{2003-2ab}(*)$
Với $a,b$ nguyên thì $\frac{a^2+2b^2-2004}{2003-2ab}$ là số hữu tỉ.
Mà $\sqrt{2}$ là số vô tỉ (đây là bài toán quen thuộc)
Do đó $(*)$ vô lý, hay điều giả sử là sai, tức là không tồn tại $a,b\in\mathbb{Z}$ thỏa mãn đkđb.
= 20072004 - 20032004
= (20074)501 - (20034)501
= (.....1))501 - (.....1)501
= ...... 1 - (.....1) = ........0
Vì tận cùng là 0 => chia hết cho +-2 và +-5
= 20072004 - 20032004
= (20074)501 - (20034)501
= (.....1))501 - (.....1)501
= ...... 1 - (.....1) = ........0
Vì tận cùng là 0 => chia hết cho +- 2 và + -5