Cho tam giác ABC vuông tại A có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh CK vuông góc AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBMC và ΔKMA có
BM=KM
\(\widehat{BMC}=\widehat{KMA}\)
MC=MA
Do đó: ΔBMC=ΔKMA
b: Ta có: ΔBMC=ΔKMA
nên \(\widehat{CBM}=\widehat{AKM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BC//AK
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a)Xét tam giác BAM và tam giác KCM có :
M1 = M3 ( Đối đỉnh )
AM = MC ( gt )
BM = MK ( gt )
=> Tam giác BAM = tam giác KCM
=> Góc KCM = 90* ( cặp góc tương ứng ) <=> KC vuông góc AC ( đpcm )
b) Xét tam giác AMK và tam giác CMB có :
KM = MB ( gt )
AM = MC ( gt )
M2 = M4 ( Đối đỉnh )
=> Tam giác AMK = tam giác CMB
=> Góc MKA = góc MBC ( cặp góc tương ứng )
=> AK song song BC ( cặp góc so le trong bằng nhau ) ( đpcm )
a) Xét \(\Delta AIB\),\(\Delta AIC\) có: ^BAI=^CAI (gt) , AI chung, AB=AC
=>\(\Delta AIB\)=\(\Delta AIC\)(c.g.c)
b) Xét\(\Delta AMD\), \(\Delta CMB\) có: ^AMD=^BMC (2 goc đối điỉnh)
AM=MC(gt) ; BM=MD(gt)
=>\(\Delta AMD\)=\(\Delta CMB\)(c.g.c)
=> AD=BC ; BD=AC
Xét \(\Delta ABC\) => AB+BC>AC ( bđt trong tam giác)
mà AC=BD => AB+BC>BD
c) xét \(\Delta AHM\),\(\Delta CKM\) (^AHM=^CKM=90o) có: AM=MC(gt) , ^AMH=^CMK ( 2gocs dd)
=>\(\Delta AHM\)=\(\Delta CKM\)
=>AH=CK
=>AH+CK=2AH
Xét \(\Delta AHM\) vuông tại H:=> ^AMH< ^AHM
=> AM>AH
=>2AM>2AH
mà 2AM=AC(gt) 2AH= AH +CK
=>AC>AH+CK
Xét tam giác AMB và tam giác CMK:
+ AM = MC (M là trung điểm của AC).
+ BM = KM (gt).
+ \(\widehat{AMB}=\widehat{CMK}\) (đối đỉnh).
\(\Rightarrow\) Tam giác AMB = Tam giác CMK (c - g - c).
b) Ta có: \(\widehat{BAM}=\widehat{KCM}\) (Tam giác AMB = Tam giác CMK).
\(\Rightarrow\) AB // CK (dhnb).
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)