1.Cho x, y, z dương thỏa mãn x + y + x = 3. Tính giá trị nhỏ nhất của :
P = \(2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2.Cho hai số x, y dương thỏa mãn \(x+y\le2\).Tính giá trị nhỏ nhất của :
C = \(\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)