Tìm giá trị nguyên của x đe biểu thức \(M=\frac{2016x-2016}{3x+2}\) có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2016x-2016}{3x+2}=\frac{3x+2013x+2-2018}{3x+2}=\frac{3x+2+2013x-2018}{3x+2}=1+\frac{2013x-2018}{3x+2}\)
de min A thi 3x + 2 nho nhat
<=> 3x + 2 = -1
<=> 3x = -3
<=> x = -1
vay_
\(M=\frac{2016x-2016}{3x+2}=672-\frac{3360}{3x+2}\)
Để M nhỏ nhất thì \(\frac{3360}{3x+2}\)lớn nhất
Hay 3x + 2 là số dương nhỏ nhất vì x nguyên
\(\Rightarrow3x+2\ge1\)
\(\Rightarrow x\ge-\frac{1}{3}=-0,333\)
Vì x nguyên nên x = 0 là giá trị cần tìm
\(M=\frac{2016x-2016}{3x+2}\)
\(=672-\frac{1344}{3x+2}\)
để M nhỏ nhất => \(\frac{1344}{3x+2}\)phải lớn nhất với x thuộc số nguyên
\(\Leftrightarrow3x+2\)nhỏ nhất >0
\(\Leftrightarrow x=1\)
\(M=\frac{2016x+1344}{3x+2}-\frac{3360}{3x+2}=672-\frac{3360}{3x+2}\)
M nhỏ nhất => \(\frac{3360}{3x+2}\) lớn nhất => \(3x+2\) nguyên dương và nhỏ nhất => \(3x+2=1\) => \(x=\frac{-1}{3}\)
Vậy GTNN của \(M=-2688\) khi \(x=\frac{-1}{3}\)
1) Tìm x
a) |3x - 1| + |1 - 3x| = 6
<=> |3x - 1| + |3x - 1| = 6
<=> 2|3x - 1| = 6
=> |3x - 1| = 3
=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)
b) |2x - 1| + |1 - 2x| = 8
<=> |2x - 1| + |2x - 1| = 8
<=> 2|2x - 1| = 8
=> |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)
\(M=\frac{2016x+1512}{x^2+1}\)
\(=\frac{-504x^2-504+504x^2+2016x+2016}{x^2+1}\)
\(=-504+\frac{504\left(x^2+4x+4\right)}{x^2+1}\)
\(=-504+\frac{504\left(x+2\right)^2}{x^2+1}\)
\(\ge-504\)
Dấu "=" xảy ra tại x=-2
Vậy.....
\(M=\frac{2022x-2020}{3x+2}=\frac{2022x+1348-3368}{3x+2}\)
\(=674-\frac{336}{3x+2}\)
Bạn lập bảng là xog.
TL:
\(M=\frac{2022x-2020}{3x-2}=\frac{2022x+1348-3368}{3x-2}\)
\(=674-\frac{336}{3x+2}\)
_HT_
\(M=\frac{2016-x}{3x+2}\) \(Đkxđ:x\ne\frac{2}{3}\)
Để M nhỏ nhất thì \(\Leftrightarrow2016x-2016=0\left(x\ne\frac{2}{3}\right)\)
\(\Rightarrow2016x-2016=0\)
\(\Rightarrow2016x=2016\)
\(\Rightarrow x=1\left(tm\right)\)
Vậy \(Min_M\) \(=0\) xảy ra \(\Leftrightarrow x=1\)