cho 3 số thực dương \(a\sqrt{b}+b\sqrt{c}+c\sqrt{a}\ge24\)tìm GTNN của \(S=a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a\sqrt{b}+b\sqrt{c}+c\sqrt{a}=\sqrt{ab}\cdot\sqrt{a}+\sqrt{bc}\cdot\sqrt{b}+\sqrt{ca}\cdot\sqrt{c}\)
\(\le\sqrt{\left(ab+bc+ca\right)\left(a+b+c\right)}\le\sqrt{\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)}\)
\(=\sqrt{\frac{\left(a+b+c\right)^3}{3}}\Rightarrow\frac{\left(a+b+c\right)^3}{3}\ge576\)
\(\Rightarrow\left(a+b+c\right)^3\ge1728\Rightarrow a+b+c\ge\sqrt[3]{1728}=12\)
Dấu "=" xảy ra khi: \(a=b=c=4\)
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
- Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
- Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
- Xét x,y>1 thay vào giả thiết ta có
\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
Áp dụng BĐT Bunyakovsky, ta có:
\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)
Áp dụng BĐT Cauchy, ta có:
\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)
Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)
Đẳng thức xảy ra khi a = b = c = 1.
Vậy GTNN của A là 1 (khi a = b = c = 1).
\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự và cộng lại:
\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)
đổi ẩn
\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)
\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)
dấuu "=" xảy ra khi \(a=b=c=1\)
vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v
bài này
áp dụng cô si ta có
a³/b + ab ≥ 2a²
b³/c + bc ≥ 2b²
c³/a + ac ≥ 2c²
+ + + 3 cái lại
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc
mặt khác ta có
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé)
thay vào
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1
=>minP = 1
dấu bằng xảy ra <=. a = b = c = 1/√3
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)
k và kết bạn cho mình nha !!!
\(24\le\sqrt{a}\sqrt{ab}+\sqrt{b}\sqrt{bc}+\sqrt{c}\sqrt{ca}\le\sqrt{\left(a+b+c\right)\left(ab+bc+ca\right)}\le\sqrt{\frac{\left(a+b+c\right)^3}{3}}\)
\(\Leftrightarrow\)\(a+b+c\ge12\)