Cho tam giac ABC co goc A < 90 do . AB = AC . Ke BD vuong goc AC (D thuoc AC) va CE vuong goc AB (E thuoc AB) . Goi O la giao diem cua BD va CE.
Chung minh: a) BD = CE
b) OE = OD va OD = OC
c) OA la tia phan giac goc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
a) Xét \(\Delta\)ABD vuông tại D và \(\Delta\)ACE vuông tại E có:
AB = AC ( giả thiết )
^BAD = ^CAE ( = ^BAC )
=> \(\Delta\)ABD = \(\Delta\)ACE ( cạnh huyền - góc nhọn ) (1)
=> BD = CE
b ) Xét \(\Delta\)AEO vuông tại E và \(\Delta\)ADO vuông tại D có:
AD = AE ( suy ra từ (1))
AO chung
=> \(\Delta\)AEO = \(\Delta\)ADO ( cạnh huyền - cạnh góc vuông ) (2)
=> OE = OD (3)
Mặt khác EC = BD ( theo a) (4)
Từ (3); (4) => OC = OB
c) Từ (2) => ^EAO = ^DAO => ^BAO = ^CAO => OA là phân giác ^BAC
Nghỉ thôi, học hành j tầm này.
a) Xét tam giác vuông ABD và tam giác vuông ACE có
góc A chung
AB= AC
=> tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền góc nhọn)
=> BD=CE ( 2 cạnh tương ứng )
b) Vì tam giác v ABD = tam giác ACE (cmt)
=> góc ABD = góc ADE ; AE=AD
Ta có : AE+EB = AB
AD+DC= AC
Mà AE=AD ; AB=AC
=> EB=DC
Xét tam giác vuông BEI và tam giác vuông CDI có :
EB=DC
góc ABD=góc ACE
=> tam giác BEI= tam giác CDI ( cạnh huyền góc nhọn )
=> EI= ID ( 2 cạnh tg ứng )
c) Xét tam giác ABC có
CE là đường cao tam giác ABC
BD là đường cao tam giác ABC
MÀ CE và BD cắt nhau tại I
=> I là trực tâm tam giác ABC
=> AI vuông góc với BC (1)
Ta có : BI = CI ( tam giác BEI = tam giác CDI)
=> tam giác IBC là tam giác cân
MÀ IH là trung tuyến của tam giác IBC ( H là TĐ của BC)
=> IH đồng thời là đường cao của tam giác IBC
=> IH vuông góc với BC (2)
Từ (1) và (2) => A, I , H thẳng hàng
Câu trả lời hay nhất: Bạn học lớp 7 phải không, mình giải theo cách lớp 7 vậy, hơi dài!
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
p/s : kham khảo
a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có :
\(\widehat{EAD:}chung\)
\(AB=AC\)
\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)
\(\Rightarrow BD=CE\left(dpcm\right)\)
b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :
\(CE=BD\left(cmt\right)\)
\(\widehat{BEC}=\widehat{CDB}=90^o\)
\(BC:chung\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)
a,Xét tam giác ABD và tam giác ACB có
AB=AC(gt)
D2=E2=90 độ
A góc chung
=>tam giác ABD=tam giác ACB(ch-gn)
b,Xét tam giác EBC và tam giác DCB có
E1=D1=90 độ
góc B= góc C theo tam giác cân
BC cạnh chung
=> 2 tam giác = nhau (g.c.g)
=>EB=DC(cặp cạnh tg ứng)
XÉt tam giác EOB và DOC có
E1=B1 = 90 độ
EB=DC(cmt)
O1=O2(đđ)
=>Tam giác EOB=DOC(g.c.g)
=>OE=OD(cặp canh tg ứng)
còn OD=OC mk hok bít làm
Tự kẻ hình nha bn^_^
a, Vì AB=AC nên t.giác ABC cân tại A
=> góc ABC=g.ACB
Xét t.giác BEC và t.g CDB, ta có:
góc BEC=g.BDC=90
Cạnh BC chung
g.ABC=g.ACB(c/m trên)
=>tg BEC=tg CDB(cạnh huyền-góc nhọn)
=>BD=EC
b,Theo c/m câu a =>BE=DC(hai cạnh tg ứng)
Lại có:
góc BEO=CDO=90
g.EOB=g.DOC ( đối đỉnh)
=>g.EBO=g.ODC
Xét tg BEO và tg CDO, ta có
g,EBO=g.ODC (c/m trên)
BE=DC(c/m trên)
g.BEO=g.CDO=90
=>tg BEO=tg CDO(g.c.g)
=>EO=DO
( c/m OD=OC có j đó sai nha bn ,xem lại đề ik)
c,Theo c/m câu b,=>BO=OC
Xét tg BOA và tg COA, ta có
BA=CA(gt)
OA cạnh chung
BO=OC(c/m trên)
=>tg BAO=tg COA(c.c.c)
=>g.BAO=g.CAO
=> OA là tia phân giác của góc BAC