K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

b: Vì 14n+10 là số chẵn

và 10n+7 là số lẻ

nên 14n+10 và 10n+7 là hai số nguyên tố cùng nhau

17 tháng 10 2021

5(3n+2)=15n+10

3(5n+3)=15n+9

hai số 15n+9 và 15n+10 là hai số tự nhiên liên tiếp nên ng.tố cùng nhau

28 tháng 2 2021

Bài 1:Tính cả ước âm thì là số `12`

Bài 2:

Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`

`=>7n+10 vdots d,5n+7 vdots d`

`=>35n+50 vdots d,35n+49 vdots d`

`=>1 vdots d`

`=>d=1`

`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.

Các phần còn lại thì bạn làm tương tự câu a.

10 tháng 10 2021

Thanks,tui cũng đang mắc ở bài 2

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.

18 tháng 12 2022

a: Gọi d=ƯCLN(n+3;n+2)

=>n+3-n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>n+2 và n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+3;3n+5)

=>6n+9-6n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>2n+3 và 3n+5là hai số nguyên tố cùng nhau

25 tháng 2 2020

mk cx hok bồi nek

sao thấy đề bồi này nó cứ dễ sao ấy

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

a: Gọi d là ước chung lớn nhất của 3n+4 và n+1

=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)

=>\(3n+4-3n-3⋮d\)

=>\(1⋮d\)

=>d=1

=>n+1 và 3n+4 là hai số nguyên tố cùng nhau

b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7

=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)

=>\(35n+50-35n-49⋮d\)

=>\(1⋮d\)

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4

=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)

=>\(42n+9-42n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau

9 tháng 11 2023

thanks

 

17 tháng 10 2021

\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)

\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn

\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)

\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy 3n+10 và 3n+9 ntcn