K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đặt A=a(a+5)

TH1: a=2k

=>A=2k(2k+5) chia hết cho 2

TH2: a=2k+1

A=(2k+1)(2k+1+5)

=2(k+3)(2k+1) chia hết cho 2

=>A luôn chia hết cho 2

b: Đặt B=(a+3)(3a+4)

TH1: a=2k+1

B=(2k+1+3)[3(2k+1)+4]

=(2k+4)(6k+7)

=2(k+2)(6k+7) chia hết cho 2

TH2: a=2k

B=(2k+3)(3*2k+4)

=2(3k+2)(2k+3) chia hết cho 2

=>B chia hết cho 2

c: nếu a và b có cùng tính lẻ hoặc chẵn thì chắc chắn a+b sẽ chia hết cho 2

=>ab(a+b) chia hết cho2 

Nếu a và b có một số chẵn, một số lẽ thì đương nhiên a*b sẽ chia hết cho 2

=>ab(a+b) chia hết cho 2

Do đó: ab(a+b) chia hết cho 2 với mọi số tự nhiên a,b

2 tháng 8 2023

em cảm ơn

a: Đặt A=a(a+5)

TH1: a=2k

=>A=2k(2k+5) chia hết cho 2

TH2: a=2k+1

A=(2k+1)(2k+1+5)

=2(k+3)(2k+1) chia hết cho 2

=>A luôn chia hết cho 2

b: Đặt B=(a+3)(3a+4)

TH1: a=2k+1

B=(2k+1+3)[3(2k+1)+4]

=(2k+4)(6k+7)

=2(k+2)(6k+7) chia hết cho 2

TH2: a=2k

B=(2k+3)(3*2k+4)

=2(3k+2)(2k+3) chia hết cho 2

=>B chia hết cho 2

c: nếu a và b có cùng tính lẻ hoặc chẵn thì chắc chắn a+b sẽ chia hết cho 2

=>ab(a+b) chia hết cho2 

Nếu a và b có một số chẵn, một số lẽ thì đương nhiên a*b sẽ chia hết cho 2

=>ab(a+b) chia hết cho 2

Do đó: ab(a+b) chia hết cho 2 với mọi số tự nhiên a,b

2 tháng 8 2023

hi

16 tháng 12 2016

Nếu N lẻ thì lẻ(lẻ+5) là chẵn

Nếu N chẵn thì chẵn(chẵn+5) là chẵn 

Cả hai trường hợp đều cho ta kết quả chẵn nén với mọi n (N+5)chia hết cho 2

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

23 tháng 7 2018

Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2

Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2

 => (n+3) (n+6) chia hết cho 2 với mọi STN n

23 tháng 7 2018

Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều . 

Thank you very very much .

Kết bạn nhé .

Xét các TH:

-TH1:\(n=2k\left(k\inℕ\right)\) 

\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)

-TH2:\(n=2k+1\left(k\inℕ\right)\)

\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)

Xét \(\(2\)\) trường hợp
Trường hợp 1:

+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))

Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:

+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))

Theo bài ra ta có:

\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)

\(\(=2.\left(n^2+7n+3\right)⋮2\)\)

\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)

_Minh ngụy_