Chứng tỏ phương trình sau vô nghiệm
a) x^2 + 2x + 3 = 0
b) (x +3)^2 - 6x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2>0\)
Vậy pt vô nghiệm
b) Ta có \(x^2+2x+4\)
\(=\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+3>0\)
Vậy pt vô nghiệm
\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)
\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)
Vậy phương trình vô nghiệm
p/s: mk ko bt cách trình bài => sai sót bỏ qua
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(3x^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy phương trình có nghiệm \(x=0\) và \(x=1\)
Đề sai nhé
\(b)\) Ta có :
\(x^2+2x+3\)
\(=\)\(\left(x^2+2x+1\right)+2\)
\(=\)\(\left(x+1\right)^2+2\ge2>0\)
Vậy đa thức \(x^2+2x+3\) vô nghiệm
Em mới lớp 7 có gì sai anh thông cảm nhé
a) \(ĐKXĐ:x\inℝ\)
\(\frac{x^2+2x+3}{x^2-x+1}=0\)
\(\Leftrightarrow x^2+2x+3=0\)
\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(ĐKXĐ:x\ne\pm2\)
\(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)
\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2-2x+4x+8-4=0\)
\(\Leftrightarrow x^2+2x+4=0\)
\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
Đặt \(B=x^2+x+3=0\)
\(\Rightarrow2B=2x^2+2x+3=0\)
\(\Leftrightarrow x^2+\left(x^2+2x+1\right)+2=0\)
\(\Leftrightarrow x^2+\left(x+2\right)^2+2=0\)
\(\Leftrightarrow x^2+\left(x+2\right)^2=-2\)
Có : \(x^2\ge0\)
\(\left(x+2\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)
Mà \(-2< 0\)
Vậy pt vô nghiệm .
Cách 1. \(x^2+x+3=\left(x^2+x+\frac{1}{4}\right)+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)
Dấu "=" không xảy ra nên pt vô nghiệm.
Cách 2. Ta có \(x^2+x+3=\left(x^2+x+1\right)+2\)
Mà \(x^2+x+1\) là bình phương thiếu của một tổng nên vô nghiệm.
=> PT vô nghiệm.
Lời giải:
a) Ta có:
$x^2+2x+3=0$
$\Leftrightarrow (x^2+2x+1)=-2$
$\Leftrightarrow (x+1)^2=-2< 0$ (vô lý do $(x+1)^2\geq 0, \forall x$)
Do đó PT vô nghiệm
b)
$(x+3)^2-6x=0$
$\Leftrightarrow x^2+6x+9-6x=0$
$\Leftrightarrow x^2=-9< 0$ (vô lý)
Do đó PT vô nghiệm.