có 2 máy bơm nước vào bể . nếu hai máy cùng bơm thì sau 22h55 phút đầy bể. nếu để mỗi máy bơm riêng thì thời gian máy 1 bơm đầy bể ít hơn thời gian máy 2 bơm đầy bể là 2 giờ. hỏi mỗi máy bơm riêng thì trong bao lâu đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian chiếc máy bơm thứ nhất chảy riêng để đầy bể là x (giờ, x>3)
thời gian chiếc máy bơm thứ hai chảy riêng để đầy bể là y (giờ, y>8)
Trong 1h, máy thứ nhất chảy đc \(\frac{1}{x}\)(bể); máy thứ 2 chảy đc \(\frac{1}{y}\)(bể); cả 2 máy cùng chảy đc \(\frac{1}{3}\)(bể)
Do đó ta có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\left(1\right)\)
Vì thời gian chảy riêng để đầy bể của chiếc thứ nhất ít hơn chiếc thứ 2 là 8h nên ta có pt:\(x+8=y\left(1\right)\)
Từ (1)(2) ta có hpt \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\\x+8=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x+8\\\frac{1}{x}+\frac{1}{x+8}=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=x+8\\3x+24+3x=x^2+8x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x-24=0\\y=x+8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-4x+6x-24=0\\y=x+8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+6\right)\left(x-4\right)=0\\y=x+8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-6;y=2\left(koTMĐK\right)\\x=4;y=12\left(TMĐK\right)\end{cases}}\)
Vậy thời gian máy thứ nhất chảy riêng đầy bể là 4h; máy thứ 2 là 12h