Cho tam giác ABC vuông tại A ( AB < AC ). O là trung điểm của BC, trên tia đối của tia OA lấy điểm K sao cho OA= OK. Vẽ AH vuông góc BC tại H. Trên tia HC lấy HD = HA. Đường vuông góc với BC tại D cắt AC tại E
a) CMR: Tam giác ABC bằng tam giác CKA và AO = 1/2 BC
b) CM AB = AE
c) Gọi M là trung điểm của BE. tính góc CHM
Ai giúp tui với
Bài làm
~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~
a) Xét ∆BOA và ∆COK có:
OA = OK ( GT )
GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )
OB = OC ( O LÀ TRUNG ĐIỂN BC )
=> ∆BOA = ∆COK ( c.g.c )
=> AB = KC ( hai cạnh tương ứng )
=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )
MÀ hai góc này ở vị trí số le trong.
=> AB // CK
Mà BA | AC
=> CK | AC
Xét ∆ABC và ∆CKA có:
AB = CK ( cmt )
Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )
Cạnh AC chung.
=> ∆ABC = ∆CKA. ( c.g.c )
Bài alfm
Vì tâm giác ABC = tâm giác AKC
=> BC = AK.
Mà AO là trung điểm AK.
=> AO = 1/2 AK
Hay AO = 1/2BC