X^2 - 4x - 81 + 16
Phân tích đa thức thành nhân tử
Giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[2\left(x-1\right)-3x\right]\left[2\left(x-1\right)+3x\right]\\ =\left(2x-2-3x\right)\left(2x-2+3x\right)\\ =\left(-2-x\right)\left(5x-2\right)\\ =\left(x+2\right)\left(2-5x\right)\)
\(=x^2\left(8x-3\right)-\left(8x-3\right)=\left(8x-3\right)\left(x^2-1\right)\)
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
Câu 1:
\(4x^2+16x-9\)
\(=4x^2+18x-2x-9\)
\(=2x\left(2x+9\right)-\left(2x+9\right)\)
\(=\left(2x-1\right)\left(2x+9\right)\)
Câu 2:
\(6x^2-11x+3=0\)
\(\Leftrightarrow6x^2-2x-9x+3=0\)
\(\Leftrightarrow2x\left(3x-1\right)-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
a: =(x^2-1)^2-2x(x^2-1)+x(x^2-1)-2x^2
=(x^2-1)(x^2-1-2x)+x(x^2-1-2x)
=(x^2-2x-1)(x^2+x-1)
b: \(=\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2+x+1\right)\)
\(\text{a) }4x^{16}+81=4x^4+36x^2+81-36x^8\)
\(=\left(4x^{16}+36x^8+81\right)-36x^8\)
\(=\left[\left(2x^8\right)^2+2.2x^8.9+9^2\right]+\left(6x^4\right)^2\)
\(=\left(2x^8+9\right)^2-\left(6x^4\right)^2\)
\(=\left(2x^8+9-6x^4\right)\left(2x^8+9+6x^4\right)\)
\(\text{b) }x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x\left(x^3-1\right)-2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2-x\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)
\(\left(x-4\right)^2-9^2=\left(x-13\right)\left(x+5\right)\)