Chứng minh:
S=\(\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{1992}{2^{1991}}\)< 4
5 like cho ai giải được bài này, Hứa
nhanh nào nhanh nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{1992}{2^{1991}}\)
2.S = \(2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{1992}{2^{1990}}\)
=> 2.S - S = \(2+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}\)
=> S = \(2-\frac{1992}{2^{1991}}+\left(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\right)\)
Đặt A = \(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\)
=>2.A = 2 + \(\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{1989}}\)
=> 2.A - A = 2 - \(\frac{1}{2^{1990}}\)=A
Vậy S = \(4-\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}<4\)
Mình làm bài 2 nhé:
Ta có: \(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
....
\(\frac{1}{50^2}<\frac{1}{50\times51}=\frac{1}{50}-\frac{1}{51}\)
Tổng các vế ta sẽ có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}=\frac{49}{102}<1\)
C=(67/111+2/33-15/117).(1/3-1/4-1/12)
C=(67/111+2/33-15/117).0
C=0
MK NHA MK NHANH NHẤT ĐÓ
2E=1+\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2003}}\)
2E-E=1-\(\frac{1}{2^{2004}}\)
E=\(\frac{1}{2^{2004}}\)
Ủng hộ mk nha
Bạn có thể vào đây tham khảo Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Nhấn vào dòng chữ màu xanh