Cho tam giác ABC có (AB= AC ).Trên cạnh AB lấy điểm M, trên tia AC lấy điểm N sao cho BM=CN. Đường thẳng BC cắt MN tại I.CMR:
a,I là trung điểm của MN.
b, Đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)
a, Tam giác ABC có AB=AC (gt)
=> ∆ ABC cân tại A ( tính chất tam giác cân )
do đó góc B = góc C ( hai góc ở đáy )
Ta có : góc ABC = góc ECN ( hai góc đối đỉnh )
Xet ∆ vg BDM va ∆ vg CEN co :
BD=CE ( gt )
góc ABD = góc ECN ( cùng bằng góc ACB )
=> ∆ vuông góc BDM = ∆ vuông góc ECN ( cạnh góc vuông và góc nhọn kề cạnh ấy )
Do đó DM = EN ( hai cạnh tương ứng )
b) Ta có: MD vuông góc với BE
BE vuông góc với EN
=>MD//EN => góc DMI = góc INE(so le trong)
Xét ∆ MDI và ∆ IEN ta có:
MD=EN(vì ∆ MBD = ∆ CEN)
góc MDI = góc IEN(=90 độ)
góc DMI = góc INE(cmt)
=>∆ MDI = ∆ IEN(CGV-GN)
=>IM=IN(ctư)
=>đường thẳng BC cắt MN tại trung điểm I của MN
c)Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại K
H là chân đường vuông góc kẻ từ A xuống BC
Xét ∆ ABK và ∆ ACK có
AK là cạnh chung
AB=AC(cmt)
Góc BAK=góc KAC
suy ra tam giác ABK = tam giác ACK (c-g-c)
suy ra KB=KC nên K € AH đường trung trực của BC
Mặt khác :Từ ∆ DMB= ∆ ENC(câu a)
Ta có : BM=CN
BK=CK(cmt)
góc MBK=góc NCK=90 độ
Nên ∆ BMK = tam giác CNK(c-g-c)
suy ra MK=NK hay đường trung trực của MN luôn đi qua điểm K cố định (đpcm)
Do dài mình viết tắc nhìu. Bạn thông cảm
Bạn vào YouTube và đăng kí kênh nha. Kênh tên là CT CATTER
CHÚC BẠN HỌC TỐT!!!!!
Tk cho mình nha
Chúc bạn học tốt
a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :
BD = CE(đầu đề ghi BD = BE là sai rồi nhá)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)
=> DM = EN(hai cạnh tương ứng)
b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :
DM = EN(theo câu a)
\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)
=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)
=> IM = IN(hai cạnh tương ứng)
=> BC cắt MN tại I
=> I là tđ của MN
c) Gọi H là chân đường vuông góc kẻ từ A xuống BC
Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :
AB = AC(tam giác ABC cân tại A)
AH chung
=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)
Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I
Xét tam giác OAB và tam giác OAC có :
OA chung
AB = AC(tam giác ABC cân tại A)
góc B = góc C(tam giác ABC cân tại A)
=> tam giác OAB = tam giác OAC(c.g.c)
=> góc OBC = góc OCA (1)
Xét tam giác vuông OIM và tam giác vuông OIN có :
OI chung
IM = IN(theo câu b)
=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)
=> OM = ON(hai cạnh tương ứng)
Xét tam giác OBM và tam giác OCN có :
OM = ON(cmt)
OB = OC(tam giác OAB = tam giác OAC)
BM = CN(tam giác MDB = tam giác NEC)
=> tam giác OBM = tam giác OCN(c.c.c)
=> góc OBM = góc OCM (2)
Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)
Vậy điểm O cố định
Câu a, DM = EN chứ k phải DM = ED