K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

ai giúp mình với đc không(30p)

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

Lời giải:

Đổi 20 phút = $\frac{1}{3}$ giờ; 30 phút = $\frac{1}{2}$ giờ 

Giả sử vòi 1 và vòi 2 chảy 1 mình thì sau tương ứng $a,b$ giờ thì đầy bể

Khi đó, trong 1 giờ thì:

Vòi 1 chảy $\frac{1}{a}$ bể; vòi 2 chảy $\frac{1}{b}$ bể 

Theo bài ra ta có: \(\left\{\begin{matrix} \frac{3}{a}+\frac{3}{b}=1\\ \frac{1}{3a}+\frac{1}{2b}=\frac{1}{8}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{4}\\ \frac{1}{b}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=12\end{matrix}\right.\)

Vậy......

 

2 tháng 4 2018

Trả lời giúp mình nha m.n >_<

1 tháng 2 2021

Gọi thời gian vòi 1 chảy một mình đẩy bể là x ( x<4)

Gọi thời gian vòi 2 chảy một mình đầy bể là y (y<4)

Trong một giờ:

-Vòi 1 chảy một mình được \(\dfrac{1}{x}\)(bể)

-Vòi 2 chảy được \(\dfrac{1}{y}\)(bể)

-Cả hai vòi chảy được \(\dfrac{1}{4}\)(bể)

+Ta có PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{9}\)  (1)

Vì nếu để vòi 1 chảy một mình trong 30 phút rồi khóa lại và mở vòi hai trong 20 phút thì cả hai vòi chảy được 1/9 bể nên có PT:

\(\dfrac{1}{2}x+\dfrac{1}{3}y=\dfrac{1}{9}\)

\(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\) (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{x}{1}+\dfrac{y}{1}=\dfrac{1}{4}\\\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(TM)

Vậy vòi 1 chảy một mình trong 6 giờ thì đẩy bể

Vậy vòi 2 chảy một mình trong 12 giờ thì đẩy bể

 

1 tháng 2 2021

Cần giải HPT thì bảo mình @@

Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể

y(giờ) là thời gian vòi 2 chảy một mình đầy bể

(Điều kiện: x>3; y>3)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{3}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)(1)

Vì khi mở vòi 1 trong 20' và mở vòi 2 trong 30' thì cả hai vòi chảy được 1/8 bể nên ta có phương trình:

\(\dfrac{1}{3x}+\dfrac{1}{2y}=\dfrac{1}{8}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{1}{9}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{6}\cdot\dfrac{1}{y}=\dfrac{-1}{72}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{12}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{1}{4}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần 4 giờ để chảy một mình đầy bể

Vòi 2 cần 12 giờ để chảy một mình đầy bể

13 tháng 7 2016

x*(x-3)- 3x = (x+2) +1