Cho a. b, c thỏa mãn: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}\)
CM: 4(a - b)(b - c) = (c - a)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-ac-bc+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(a;b;c>0\Rightarrow a+b+c>0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
\(P=0\)
Ta có :
Đặt \(\frac{a}{2019}\)= \(\frac{b}{2020}\)= \(\frac{c}{2021}\)= k
=> a = 2019k; b = 2020k; c = 2021k
M = 4(a-b).(b-c) - (c-a)
M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)
M = 4.(-1)k.(-1)k - 2k
M = 4k2 - 2k
(Hình như mình thấy đề bạn có gì sai sai)
Đặt a/2018 = b/2019 = c/2020
=> a = 2018k ; b = 2019k ; c = 2020k
Khi đó, ta có :
(2018k - 2020k)2 = 4k2 (1)
4.(2018k - 2019k)(2019k - 2020k) = 4.(-k).(-k) = 4k2 (2)
Từ (1) và (2) => đpcm
Mình làm cách lớp 7 kiểu khác nhé:
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-c}{2018-2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}\)
\(\Rightarrow\frac{a-c}{-2}=\frac{a-b}{-1}=\frac{b-c}{-1}\Leftrightarrow a-c=2\left(a-b\right)=2\left(b-c\right)\&a-b=b-c\)
\(\Leftrightarrow\left(a-c\right)^2=2\left(a-b\right).2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\left(đpcm\right).\)
Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)
\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)
Khi đó :
\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
Ta có: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}=\frac{a-c}{2018-2020}.\)