1/(m-1)x2+2mx+m-7=0 (I)
giải và biện luận số nghiệm của (I) theo tham số m
2/giải và biện luận
a)x2+2mx+m2+m-1=0
mx2+(2m+1)x+m+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m = 0 phương trình trở thành
-x - 2 = 0 ⇒ x = -2
m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1
Với m < -1/4 phương trình vô nghiệm;
Với m ≥ -1/4 nghiệm của phương trình là
Lời giải:
a)
\(\Delta=9-4m\)
Nếu \(m>\frac{9}{4}\Rightarrow \Delta=9-4m<0\Rightarrow \) pt vô nghiệm
Nếu \(m=\frac{9}{4}\Rightarrow \Delta=9-4m=0\Rightarrow \) pt có nghiệm kép \(x_1=x_2=\frac{3}{2}\)
Nếu \(m< \frac{9}{4}\Rightarrow \Delta=9-4m>0\Rightarrow \) pt có 2 nghiệm phân biệt
\(x_1=\frac{3+\sqrt{9-4m}}{2}; x_2=\frac{3-\sqrt{9-4m}}{2}\)
b)
Nếu \(m=\frac{1}{2}\) thì : \(-x+1=0\).
PT có nghiệm duy nhất $x=1$
Nếu \(m\neq \frac{1}{2}\Leftrightarrow 2m-1\neq 0\). PT đã cho là PT bậc 2 ẩn $x$.
\(\Delta'=m^2-(2m-1)=(m-1)^2\)
+) \(m=1\Rightarrow \Delta'=0\): PT có nghiệm kép \(x_1=x_2=1\)
+) \(m\neq 1\Rightarrow \Delta'>0\): PT có hai nghiệm phân biệt
\(x_1=\frac{m-(m-1)}{2m-1}=\frac{1}{2m-1}\); \(x_2=\frac{m+(m-1)}{2m-1}=1\)
Vậy.......
1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)
\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)
\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)
\(=4m^2-8m+4+4m^2-4m-24\)
\(=-12m-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-12m-20>0\)
\(\Leftrightarrow-12m>20\)
hay \(m< \dfrac{-5}{3}\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow-12m-20=0\)
\(\Leftrightarrow-12m=20\)
hay \(m=\dfrac{-5}{3}\)
Để phương trình vô nghiệm thì Δ<0
\(\Leftrightarrow-12m-20< 0\)
\(\Leftrightarrow-12m< 20\)
hay \(m>\dfrac{-5}{3}\)
2: ĐKXĐ: \(m\ne-2\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)
Ta có: \(x_1+x_2=x_1x_2\)
\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)
Suy ra: 2m-2=3-m
\(\Leftrightarrow2m+m=3+2\)
\(\Leftrightarrow3m=5\)
hay \(m=\dfrac{5}{3}\)(thỏa ĐK)
\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)
\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)
\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)
thấy x bật nhất thì dùng biện luận theo kiểu bật nhất
thấy x bật 2 thì dùng denta
a: =>x(m-2)(m+2)=-m+2
Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0
=>m<>2; m<>-2
Đểphương trình vô nghiệm thì m+2=0
=>m=-2
Để phương trình có vô số nghiệm thì m-2=0
=>m=2
b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)
Để phương trình có nghiệm duy nhất thì m^2-16<>0
hay \(m\notin\left\{4;-4\right\}\)
Để phương trình vô nghiệm thì m^2-16=0
=>m=4 hoặc m=-4
c: TH1: m=3
Pt sẽ là 4x-2=0
=>x=1/2
TH2: m<>3
\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)
=16+8(m-3)
=8m-24+16=8m-8
Để phương trình vô nghiệm thì 8m-8<0
=>m<1
Để phương trình có nghiệm duy nhất thì 8m-8=0
=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0
=>m>1
d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)
=25-8m+4
=-8m+29
Để phương trình vô nghiệm thì -8m+29<0
=>-8m<-29
=>m>29/8
Để phương trình có nghiệm duy nhất thì -8m+29=0
=>m=29/8
Để phương trình có hai nghiệm phân biệt thì -8m+29>0
=>m<29/8
1/ Với \(m=1\) pt có nghiệm duy nhất \(x=3\)
Với \(m\ne1\Rightarrow\Delta'=m^2-\left(m-1\right)\left(m-7\right)=8m-7\)
- Với \(m=\frac{7}{8}\) pt có nghiệm kép \(x=7\)
- Với \(m< \frac{7}{8}\) pt vô nghiệm
- Với \(\left\{{}\begin{matrix}m>\frac{7}{8}\\m\ne1\end{matrix}\right.\) pt có 2 nghiệm pt \(x_{1;2}=\frac{-m\pm\sqrt{8m-7}}{m-1}\)
2/ Ý a dễ, bạn tự làm
b/ Với \(m=0\Rightarrow x=-2\)
Với \(m\ne0\Rightarrow\Delta=\left(2m+1\right)^2-4m\left(m+2\right)=1-4m\)
- Với \(m=\frac{1}{4}\) pt có nghiệm kép \(x=1\)
- Với \(m>\frac{1}{4}\) pt vô nghiệm
- Với \(m< \frac{1}{4}\) pt có 2 nghiệm pb \(x_{1;2}=\frac{-2m-1\pm\sqrt{1-4m}}{2m}\)