K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020
GTCho △ABC vuông tại A có AB = 9cm; BC = 15 cm
KL

a) Tính AC                                                                                                              b) H ∈ BC sao cho BA = BH; HI _|_ BC (I ∈ AC). CM : △ABI = △HBI                      c) HI ∩ BA = {F} . CM : IF = IC                                                                                  d) CM : IF > HI

9cm 15cm A B C H I F

a) Áp dụng định lí Pythagoras vào △ABC, ta có :

BC2 = AB2 + AC2

\(\Rightarrow\)152 = 92 + AC2

\(\Rightarrow\)AC2 = 144

\(\Rightarrow\)AC   = 12 

Vậy độ dài cạnh AC là 12 cm

b) Xét △ABI và △HBI có :

     IB chung

     BA = BH (gt)

\(\Rightarrow\) △ABI = △HBI (cạnh huyền-góc nhọn)

[ĐPCM]

c) Ta có : △ABI = △HBI

\(\Rightarrow\)IA = IH (cặp cạnh tương ứng)

Xét △AIF và △HIC có :

     IA = IH (Chứng minh trên)

     ^AIF = ^HIC (Đối đỉnh)

\(\Rightarrow\)△AIF = △HIC (Cạnh góc vuông-Góc nhọn kề) 

\(\Rightarrow\)IF = IC (Cặp cạnh tương ứng)

[ĐPCM]

d) Xét △IBC có H ∈ BC

\(\Rightarrow\)IC > HI

\(\Rightarrow\)IF > HI (Vì IF = IC)

[ĐPCM]

8 tháng 2 2020

Mi làm được cái bài mà cái GT-KL nó phả hỏng hết :D

ÔI ! Nghiệp đang quanh quẩn bên bạn của mình XD

Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

BA=BE

=>ΔBAI=ΔBEI

=>AI=EI

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA

=>BA^2=BH*BC

=>BA=6cm

a: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

BA=BE

=>ΔBAI=ΔBEI

=>IA=IE

b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có

IA=IE

góc AIF=góc EIC

=>ΔIAF=ΔIEC

=>IF=IC và AF=EC

c: BA+AF=BF

BE+EC=BC

BA=BE; AF=EC

nên BF=BC

mà IF=IC

nên BI là trung trực của CF

=>BI vuông góc CF
Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

b: Xét ΔBAE có BA=BE và góc B=60 độ

nên ΔBAE đều

=>BE=AB=6cm

=>BC=12cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{H}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)

15 tháng 8 2021

giúp e ý c với :((