cho góc nhọn xOy như hình dưới đây và điểm A ở ngoài góc đó .Kẻ AB vuông góc Ox và AC vuông góc Oy . Chứng minh : góc xOy = góc BAC
Các bạn tự vẽ hình dùm mình nhé !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm: a) Xét t/giác OAB và t/giác OAC
có góc C = góc B = 900 (gt)
OA : chung
góc O1 = góc O2 (gt)
=> t/giác OAB = t/giác OAC (ch - gn)
=> AB = AC (hai cạnh tương ứng)
b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :
OA2 = OB2 + AB2
=> AB2 = OA2 - OB2 = 52 - 42 = 25 - 16 = 9
=> AB = 3 (cm)
a)Do H thuộc phân giác góc xOy
ma HA vuông góc với Ox;HB vuông góc với Oy
=>AH=BH=>tam giác HAB cân tại H
b)Ta có tam giác AOH=tam giác OBH(ch-gn)
=>OA=OB
TA có tam giác OAC=tam giác OBC(c.g.c)
=>góc OAC=góc OBC
mak xOy + OAC=900
=>xOy+OBC=900
Xét tam giác OBM có góc BOM+góc OBM = 900
=>góc OMB= 900
BC vuông góc với Ox
Cm: a) Xét t/giác OAB và t/giác OAC
có góc C = góc B = 900 (gt)
OA : chung
góc O1 = góc O2 (gt)
=> t/giác OAB = t/giác OAC (ch - gn)
=> AB = AC (hai cạnh tương ứng)
b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :
OA2 = OB2 + AB2
=> AB2 = OA2 - OB2 = 102 - 82 = 100 - 64 = 36
=> AB = 6
Hình vẽ : ( Mang tính chất minh họa không chính xác lắm )
Gọi \(AC\) giao \(Ox\) tại H
Xét \(\Delta ABH:\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\) ( định lý tổng 3 góc trong 1 tam giác )
Xét \(\Delta COH:\widehat{HOC}+\widehat{CHO}+\widehat{HCO}=180^o\) ( định lý tổng 3 góc trong 1 tam giác )
Mà ta thấy : \(\hept{\begin{cases}\widehat{AHB}=\widehat{CHO}\left(đ^2\right)\\\widehat{ABH}=\widehat{HCO}\left(=90^o\right)\end{cases}}\)
Nên : \(\widehat{HOC}=\widehat{HAB}\) hay \(\widehat{xOy}=\widehat{BAC}\) (đpcm)