1, Tìm n thỏa mãn n+1945 và n+2004 là số chính phương
2, Cho a,b thuộc N* thỏa mãn A=a2+b2 nguyên. Chứng minh A là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)
TH1: \(a=b\) thì \(ab=a^2\) là SCP
TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)
\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP
các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4
1)Đặt n + 1945 = a² (1) (a là số tự nhiên)
Đặt n + 2004 = b² (2) (b là số tự nhiên)
Do (n + 2004) > (n + 1945)
=> b² > a²
=> b > a (Do a và b là số tự nhiên)
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945)
<=> (b + a)(b - a) = n + 2004 - n - 1945
<=> (b + a)(b - a) = 59
=> (b + a) và (b - a) là ước tự nhiên của 59
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có:
b + a = 59 (3) và b - a = 1 (4)
cộng vế với vế của (3) và (4) ta được:
(b + a) + (b - a) = 59 + 1
<=> b + a + b - a = 60
<=> 2b = 60
<=> b = 30
Thay b = 30 vào (2) ta được
n + 2004 = 30²
<=> n + 2004 = 900
<=> n = 900 - 2004
<=> n = -1104
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương
n =900 -2004 = - nhé