Tìm nghiệm nguyên : \(3x^2-2y^2-5xy+x-2y-7=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-2y^2-5xy+x-2y-7=0\\ \Leftrightarrow\left(3x^2-6xy\right)+\left(xy-2y^2\right)+\left(x-2y\right)=7\\ \Leftrightarrow3x\left(x-2y\right)+y\left(x-2y\right)+\left(x-2y\right)=7\\ \Leftrightarrow\left(x-2y\right)\left(3x+y+1\right)=7=\left(-1\right)\left(-7\right)=1\cdot7\)
Từ đó liệt kê ra nhé
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Khi đó, để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng pt tích đơn giản. Bạn chỉ cần xét các TH thôi với $t+7y+2>0$ và $t+7y+2, t-7y-2$ có cùng tính chẵn lẻ.
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
\(3x^2-\left(5y-1\right)x-2y^2-2y-7=0\)
\(\Delta=\left(5y-1\right)^2+12\left(2y^2+2y+7\right)\)
\(=49y^2+14y+85=\left(7y+1\right)^2+84\)
Để x;y nguyên \(\Rightarrow\left(7y+1\right)^2+84=k^2\)
\(\Rightarrow k^2-\left(7y+1\right)^2=84\Leftrightarrow\left(k-7y-1\right)\left(k+7y+1\right)=84\)
\(\Rightarrow...\)