\(cho\frac{a}{b}=\frac{c}{d}\\ chứngminh\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^6=\left(\frac{c}{d}\right)^6=\left(\frac{a+c}{b+d}\right)^6\)
\(\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (1)
Ta lại có : \(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{3a^6+c^6}{3b^6+d^6}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(2\right)\)
từ (1) và (2) => đpcm
Bài 1:
\(B=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left(0,625-0,5+\frac{5}{11}+\frac{5}{12}\right)}+\frac{3\left(0,5+\frac{1}{3}-0,25\right)}{5\left(0,5+\frac{1}{3}-0,25\right)}\)
\(=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{-\left[5\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)\right]}+\frac{3}{5}\)
\(=\frac{-3}{5}+\frac{3}{5}\)
\(=0\)
Bài 2:
b) Giải:
Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{c^6}{d^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^6=\left(\frac{a+c}{b+d}\right)^6=\frac{a^6}{b^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(đpcm\right)\)
Đặt A=\(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3\)
\(=\left(\frac{-3a+2b+c}{6}\right)^3+\left(\frac{2a+b-3c}{6}\right)^3+\left(\frac{a-3b+2c}{6}\right)^3\)
\(=\left(\frac{-3a+2b+c+2a+b-3c+a-3b+2c}{6}\right)^3-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
(Hằng đẳng thức)
\(=0-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
\(\Rightarrow\frac{\left(a-3b+2c\right)\left(-3a+2b+c\right)\left(2a+b-3c\right)}{72}=\frac{1}{8}\)
\(\Leftrightarrow\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)(đpcm).
Đặt \(\frac{a}{b}=\frac{c}{d}\)=k \(\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{3a^6+c^6}{3b^6+d^6}=\frac{3\left(bk\right)^6+\left(dk\right)^6}{3b^6+d^6}=\frac{3b^6.k^6+d^6.k^6}{3b^6+d^6}=\frac{k^6\left(3b^6+d^6\right)}{3b^6+d^6}=k^6\)(1)
\(\frac{\left(a+c\right)^6}{\left(b+d\right)^6}=\frac{\left(bk+dk\right)^6}{\left(b+d\right)^6}=\frac{\left[k\left(b+d\right)\right]^6}{\left(b+d\right)^6}=\frac{k^6.\left(b+d\right)^6}{\left(b+d\right)^6}=k^6\)(2)
Từ (1) và (2), ta có: \(\frac{3a^6+c^6}{3b^6+d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\)