K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

cả hai cái mũ 2 đều \(\ge\)0 với mọi x, y

Mà tổng của chúng = 0

=> (x-11+y)2=(x-y-4)2=0

=> x-11+y = 0 => x+y = 11 (1)

x-y-4 = 0 => x-y = 4 (2)

(1), (2) => (tổng hiệu) x = 7,5 ; y = 3,5

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\) 

25 tháng 9 2018

a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)

Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)

25 tháng 9 2018

b, Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)

Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)

25 tháng 9 2018

câu b:

\(\dfrac{x}{2}=\dfrac{y}{6}\\ \dfrac{x}{2}=\dfrac{y}{6}=\dfrac{x-y}{2-6}=\dfrac{10}{-4}=\dfrac{5}{-2}\\ x=\dfrac{5}{-2}.2=\dfrac{10}{-2}=-5\\ y=\dfrac{5}{-2}.6=-15\)

25 tháng 9 2018

câu a:

\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ \dfrac{3x}{3.4}=\dfrac{2y}{2.2}=\dfrac{4z}{4.3}\\ \)

ta có

\(\dfrac{3x}{3.4}=\dfrac{2y}{2.2}=\dfrac{4z}{4.3}=\dfrac{3x+2y+4z}{12+4+12}=\dfrac{20}{28}=\dfrac{5}{7}\\ x=\dfrac{5}{7}:4=\dfrac{5}{28}\\ y=\dfrac{5}{7}:2=\dfrac{5}{14}\\ z=\dfrac{5}{7}:3=\dfrac{5}{21}\)

15 tháng 9 2018

tìm x , y , z ,t biết

x/y = 2/5 và x . y = 40

Ta có: \(\dfrac{x}{y}=\dfrac{2}{5}=>\dfrac{x}{2}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\) => x=5k, y=2k

Ta có : x . y = 5k . 2k = 40

=> 10k = 40 => k = 4

=> k = 2 hoặc -2

=> x = 5k = 5 . 2 =10

y = 2k =2 . 2 =4

hay x = 5k = 5. (-2) = -10

y = 2k = 2 . (-2) = -4

Vậy x = 10, y = 4 hoặc x = -10, y = -4

4 tháng 8 2017

Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.

Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)

\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)

\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)

Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)

3 tháng 8 2020

ngọn gió nào đã đưa idol box Hóa đến box Toán này :)))

3 tháng 8 2020

Nguyễn Trúc Giang

... Đã có chút run run khi bấm vào cái thông báo :vv Cứ ngỡ mình nhảy qua đây rồi làm sai thì tội lỗi lắm. :))