Tìm đa thức f(x), biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9,còn f(x) chia cho \(x^2+x-12\) thì được thương là \(x^2+3\) và còn dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
f(x)= (x-3). Q(x)+2 moi X
f(x)=(x+4).H(x)+9 moi X
=>f(3)= 2
f( -4)= 9
f(x)= (x^2+x-12).(x^2+3)+ ax +b
=(x-3)(x+4). (x^2+3) +ax+b
=>f(3)= 3a+b=2
f(-4)=b -4a=9
=>a= -1; b=5
=> f(x)=(x^2+x-12)(x^2+3)-x+5
= x^4+x^3-9x^2+2x-31
# mui #
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
f(x)= (x-3). Q(x)+2 moi X
f(x)=(x+4).H(x)+9 moi X
=>f(3)= 2
f( -4)= 9
f(x)= (x^2+x-12).(x^2+3)+ ax +b
=(x-3)(x+4). (x^2+3) +ax+b
=>f(3)= 3a+b=2
f(-4)=b -4a=9
=>a= -1; b=5
=> f(x)=(x^2+x-12)(x^2+3)-x+5
= x^4+x^3-9x^2+2x-31
Ta thấy :
x2 +x -12 = x2 +4x - 3x-12
= x(x+4) - 3(x+4)
= (x-3)(x+4)
Vì :
f(x) chia (x-1)(x+4) được x2 + 3 và còn dư
Mà số dư có bậc không vượt quá 1
=> f(x) = (x-3)(x+4)(x2 + 3) +ax +b
Ta có :
f(x) chia (x-3) dư 2
=> f(3)=2
=> 3a+b=2
f(x) chia (x+4) dư 9
=> f(-4)=9
=> b-4a=9
=> 3a+b-b+4a = 2-9
7a = -7
=> a= -1
=> -3 + b =2
b=5
Vậy đa thức f(x) = (x-3)(x+4)(x2 + 3) - x + 5
Bài 1:
\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)
\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)
Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)
Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)
Bài 2:
Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1
Gọi đa thức dư là \(ax+b\)
Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên
\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)
Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)
Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)
Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)
Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)
\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)
Vì f(x) chia cho x2-5x+6 được thương là 1-x2 và còn dư nên f(x) có bậc 4 và đa thức dư bậc cao nhất là 1.
Gọi f(x)=(x-2)(x-3)(1-x2)+ax+b
Ta có f(2)=2 vaf(3)=7 thay vào tìm đc a và b suy ra đa thức f(x) cần tìm.
Giải giùm nha!!
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Từ đề bài ta có \(f\left(x\right)=A\left(x\right).\left(x-3\right)+2\Rightarrow f\left(3\right)=2\)
\(f\left(x\right)=B\left(x\right).\left(x+4\right)+9\Rightarrow f\left(-4\right)=9\)
\(f\left(x\right)=\left(x^2+3\right).\left(x^2+x-12\right)+\left(x^2+3\right).\left(ax+b\right)=\left(x^2+3\right).\left(x-3\right).\left(x+4\right)+\left(x^2+3\right).\left(ax+b\right)\left(1\right)\)Từ (1).Ta có \(f\left(3\right)=\left(3^2+3\right)\left(3a+b\right)=36a+12b\Rightarrow36a+12b=2\)
\(f\left(-4\right)=\left(\left(-4\right)^2+3\right)\left(-4a+b\right)=-76a+19b\Rightarrow-76a+19b=9\)
Giải hệ phương trình ẩn a,b ta tìm được a,b.Từ đó thế vào (1).Ta tìm được f(x)