K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

a) Ta có: a⊥c,b⊥c

=> a//b

b) \(\widehat{A_2}+\widehat{A_1}=180^0\)(kề bù)

\(\Rightarrow\widehat{A_2}=180^0-115^0=65^0\)

\(\widehat{B_1}=\widehat{A_2}=65^0\)(so le trong do a//b)

\(\Rightarrow\widehat{B_1}=\widehat{B_3}=65^0\)(đối đỉnh)

21 tháng 10 2021

Còn câu C bạn

17 tháng 10 2021

Bài 8:

a: Thay x=16 vào P, ta được:

\(P=\dfrac{4+2}{4-1}=\dfrac{6}{3}=2\)

b: Thay \(x=3+2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}=\dfrac{3+\sqrt{2}}{\sqrt{2}}=3\sqrt{2}+2\)

5 tháng 2 2021

Bài 20

Hệ (1) ⇔ \(\left\{{}\begin{matrix}1< x< 4\\x\le m-1\end{matrix}\right.\)

Đặt hai tập hợp A = (1 ; 4) và B = (\(-\infty\); m - 1]

Nếu m - 1 ≤ 1 tức m ≤ 2 thì A \(\cap\) B = ∅, hệ vô nghiệm

Nếu 1 < m - 1 < 4 tức 2 < m < 5 thì

\(\cap\) B = (1; m - 1), tập nghiệm của hệ là (1; m - 1)

Nếu m - 1 ≥ 4 tức m ≥ 5 thì A \(\subset\) B. Tập nghiệm của hệ là A = (1; 4)

5 tháng 2 2021

Cảm ơn bạn yeu

22 tháng 10 2021

bạn ơi cái này là tìm về cái gì?

22 tháng 10 2021

ý bạn là \(x-y-z=-33?\)

Ta có \(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y-z}{15-10-6}=\dfrac{-33}{-1}=33\\ \Rightarrow\left\{{}\begin{matrix}x=33\cdot15=495\\y=33\cdot10=330\\z=33\cdot6=198\end{matrix}\right.\)

15 tháng 9 2021

giúp mk giải gấp 2 bài này với chiều tầm 3h mình qua lấy nha.cảm ơn mọi người nhiều ah.

 

15 tháng 9 2021

anh Hải mà on thì chắc giải đc r :v

a) Xét ΔOBH và ΔODA có 

OB=OD(gt)

\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)

mà \(\widehat{OHB}=90^0\)(gt)

nên \(\widehat{OAD}=90^0\)

hay AH\(\perp\)AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

\(\widehat{AOE}=\widehat{HOC}\)(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

15 tháng 7 2021

) Xét ΔOBH và ΔODA có 

OB=OD(gt)

ˆBOH=ˆDOABOH^=DOA^(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: ˆOHB=ˆOADOHB^=OAD^(hai góc tương ứng)

mà ˆOHB=900OHB^=900(gt)

nên ˆOAD=900OAD^=900

hay AH⊥⊥AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

ˆAOE=ˆHOCAOE^=HOC^(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

19 tháng 10 2021

                      MÌNH CHỌN ĐÁP ÁN:   Cundefined

NV
11 tháng 4 2022

\(f'\left(x\right)=x^2+2x\)

a.

\(f'\left(-3\right)=3\) ; \(f\left(-3\right)=-2\)

Phương trình tiếp tuyến:

\(y=3\left(x+3\right)-2\Leftrightarrow y=3x+7\)

b.

Gọi \(x_0\) là hoành độ tiếp điểm, do hệ số góc tiếp tuyến bằng 3

\(\Rightarrow f'\left(x_0\right)=3\Rightarrow x_0^2+2x_0=3\Rightarrow x_0^2+2x_0-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=1\Rightarrow y_0=-\dfrac{2}{3}\\x_0=-3\Rightarrow y_0=-2\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=3\left(x-1\right)-\dfrac{2}{3}=3x-\dfrac{11}{3}\\y=3\left(x+3\right)-2=3x+7\end{matrix}\right.\)

c. Tiếp tuyến song song (d) nên có hệ số góc bằng 8

Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow x_0^2+2x_0=8\)

\(\Rightarrow\left[{}\begin{matrix}x_0=2\Rightarrow y_0=\dfrac{14}{3}\\x_0=-4\Rightarrow y_0=-\dfrac{22}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=8\left(x-2\right)+\dfrac{14}{3}=...\\y=8\left(x+4\right)-\dfrac{22}{3}=...\end{matrix}\right.\)

Em tách nhỏ ra rồi hỏi nhe!! VD như 1 bài hỏi 1 lần á

3) Ta có: \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}-\dfrac{3\sqrt{5}}{4}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\sqrt{5}}{4}\)

\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{4}\)

\(=\dfrac{-\sqrt{5}}{4}\) 

1) Ta có: \(\dfrac{1}{\sqrt{3}-1}+\dfrac{1}{4+2\sqrt{3}}-\dfrac{2}{\sqrt{3}}-\dfrac{3}{2}\)

\(=\dfrac{\sqrt{3}+1}{2}+\dfrac{2-\sqrt{3}}{2}-\dfrac{2\sqrt{3}}{3}-\dfrac{3}{2}\)

\(=\dfrac{\sqrt{3}+1+2-\sqrt{3}-3}{2}-\dfrac{2\sqrt{3}}{3}\)

\(=-\dfrac{2\sqrt{3}}{3}\)

3) Ta có: \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}-\dfrac{3\sqrt{5}}{4}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\sqrt{5}}{4}\)

\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{4}\)

\(=\dfrac{-\sqrt{5}}{4}\)