Cho tam giác ABC cân tại A.Trên tia đối của tia BA lấy D, trên tia đối của tia CA lấy E sao cho BD=CE.Vẽ DH và EK cùng vuông góc với BC.
a) Chứng minh HB=CK
b) Chứng minh góc AHB =góc AKC
c) Chứng minh HK song song vs DE
d) CHỨng minh tam giác AHD = tam giác AKE
e) GỌI I là giao điểm của DC và EB .CHỨng minh AI vuông góc vs DE
Bạn tự vẽ hình nha
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
HAE = HAB + BAE
KAD = KAC + CAD
mà HAB = KAC (tam giác AHB = tam giác AKC)
=> HAE = KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE (chứng minh trên)
HAE = KAD (chứng minh trên)
AH = AK (tam giác AHB = tam giác AKC)
=> Tam giác AHE = Tam giác AKD (c.g.c)
Chúc bạn học tốt
a) Xét ΔΔvuông HBD và ΔΔvuông KCE, có:
BD=CE (gt)
B1ˆB1^=B2ˆB2^ (đối đỉnh)
C1ˆC1^=C2ˆC2^(đối đỉnh)
Mà B1ˆB1^=C1ˆC1^(gt)
nên B2ˆB2^=C2ˆC2^
Do đó:ΔΔ HBD = ΔΔKCE (c.h-g.n)
=>HB=CK (2 cạnh tương ứng)
b)Xét ΔΔAHB và ΔΔAKC có:
HB=CK (c/m trên)
AB=AC (gt)
ABHˆABH^=ACKˆACK^ (vì ABHˆABH^=1800-B1ˆB1^ ; ACKˆACK^=180o-C1ˆC1^ mà B1ˆB1^=C1ˆC1^)
c)
Do đó: ΔΔAHB = ΔΔAKC (c-g-c)
=>AHBˆAHB^=AKCˆAKC^ (2 góc tương ứng)