K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

B C D H I M O

a ) Xét \(\left(O\right)\)có \(OB\perp CD\)

\(\Rightarrow H\)là trung điểm của CD

\(\Rightarrow HC=HD\)

Xét tứ giác \(ODBC\)có : 

H là trung điểm của OB và CD

\(\Rightarrow\)tứ giác ADBC là hình thoi 

b ) Vì tứ giác ADBC là hình thoi 

\(\Rightarrow OC=BC\)

Mà \(OC=OB\left(=R\right)\)

\(\Rightarrow OC=OB=BC\)

\(\Rightarrow\Delta OBC\)là tam giác đều 

\(\Rightarrow\widehat{BOC}=60^0\)

c ) Ta có : OB = BC (cmt)

Mà OB = BM 

\(\Rightarrow OB=BC=BM\)

Xét \(\Delta OCM\)có : 

CB là đường trung tuyến 

Mà : \(BC=OB=BM\left(cmt\right)\)

\(\Rightarrow\Delta OCM\)vuông tại C nên :
\(OM^2=OC^2+CM^2\)( theo định lí Py - ta - go )

\(\Rightarrow MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)

\(\Rightarrow MC=\sqrt{3}R\)

d ) Vì ODBC là hình thoi ( cmt )
\(\Rightarrow OB\)là đường phân giác của \(\widehat{COD}\)

\(\Rightarrow\widehat{COH}=\widehat{DOH}\)

Có : \(\widehat{COH}+\widehat{HOI}=90^0\)

Hay \(\widehat{DOH}+\widehat{HOI}=90^0\)

Mà \(\widehat{HOI}+\widehat{HIO}=90^0\)

\(\Rightarrow\widehat{DOH}=\widehat{HIO}\)

Xét \(\Delta HOI\)và \(HDO\)có :
\(\widehat{OHI}\): góc chung 

\(\widehat{HIO}=\widehat{DOH}\left(cmt\right)\)

\(\Rightarrow\Delta HIO~\Delta HDO\)

\(\Rightarrow\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI.HD=OH^2\)

Chứng minh tương tự ta cũng có :
\(HB.HM=HC^2\)

Xét \(\Delta OCH\)vuông tại H 

\(\Rightarrow OH^2+HC^2=OC^2\)

Nên : \(HI.HD+HB.HM=OH^2+HC^2=OC^2=R^2\)

Chúc bạn học tốt !!!

13 tháng 12 2016

. . A B C D M H I

a) Xét (O) có OB \(\perp\) CD

=> H là trung điểm của CD

=> HC=HD

Xét tứ giác ODBC có: H là trung điểm của OB,CD

=> tứ giác ADBC là hình bình hành

Mà: OC=OD(gt)

=> tứ giác ADBC là hình thoi

b)Vì tứ giác ADBC là hình thoi

=> OC=BC

Mà OC=OB(=R)

=> OC=OB=BC

=> ΔOBC là tam giác đều

=> góc BOC =60

c) Có: OB=BC(cmt)

Mà: OB=BM

=> OB=BC=BM

Xét ΔOCM có CB là đường trung tuyến

Mà: BC=OB=BM(cmt)

=> ΔOCM vuông tại C

=> góc ACM=90

=> MC là tiếp tuyến của (O)

Xét ΔOCM vuông tại C nên:

\(OM^2=OC^2+CM^2\) ( theo đl pytago)

=> \(MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)

=> \(MC=\sqrt{3}R\)

d) Vì ODBC là hình thoi (cmt)

=> OB là đường phân giác của góc COD

=> góc COH= góc DOH

Có: góc COH+ góc HOI =90

hay: góc DOH+ góc HOI = 90

Mà: góc HOI+ góc HIO =90

=> DOH = góc HIO

Xét ΔHOI và ΔHDO có:

góc OHI : góc chung

góc HIO = góc DOH(cmt)

=> ΔHOI ~ΔHDO

=> \(\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI\cdot HD=OH^2\)

CHứng minh tương tự ta cũng có:

\(HB\cdot HM=HC^2\)

Xét ΔOCH vuông tại H

=> \(OH^2+HC^2=OC^2\)

Nên: \(HI\cdot HD+HB\cdot HM=OH^2+HC^2=OC^2=R^2\)

14 tháng 12 2016

câu d) àm vậy cũng đúng nhưng dài quá, đòi hỏi phải biết kiếm tam giác đồng dạng, thật khó ở chỗ này

mình mới tìm ra cách giải mới

HI.HD = HI.HC= OH2

HB.HM= OH.HM=CH2

cộng vế với vế ta được: HI.HD +HB.HM = OH2 + CH2 =OC2 =R2

4 tháng 12 2017

O C D M I H B

a) Xét tam giác cân OCD có OH là đường cao nên đồng thời là trung tuyến. Vậy thì HC = HD.

Xét tứ giác ODBC có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành.

Lại có hai đường chéo OB và CD vuông góc với nhau nên ODBC là hình thoi.

b) Do ODBC là hình thoi nên OC = CB. 

Xét tam giác OBC có OB = OC = BC ( = R) nên OBC là tam giác đều. Vậy thì \(\widehat{OBC}=60^o\)

c) Xét tam giác OCM có CB là đường trung tuyến ứng với cạnh OM.

Lại có \(CB=\frac{1}{2}OM\) nên tam giác OCM vuông tại C.

Từ đó suy ra MC là tiếp tuyến tại C của đường tròn (O)

d) Xét tam giác vuông OCM có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:

\(CH^2=OH.HM=HB.HM\)

Tam giác OCI vuông tại C có OH là đường cao nên ta có:

\(OH^2=HI.HC=HI.HD\)

Vậy nên \(HI.HD+HB.HM=OH^2+CH^2=OC^2=R^2\)

Vậy \(HI.HD+HB.HM=R^2\)

8 tháng 12 2017

Dạ em cảm ơn chị đã giải giúp em:)

a:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó;ΔACB vuông tại C

=>BC vuông góc PA

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD vuông góc PB

Xét ΔPAB có

AD,BC là đường cao

AD cắt BC tại Q

Do đó: Q là trực tâm

=>PQ vuông góc AB

mà PH vuông góc AB

nên P,Q,H thẳng hàng

b: Xét tứ giác BHQD có

góc BHQ+góc BDQ=180 độ

=>BHQD nội tiếp 

c: Xét tứ giác PCQD có

góc PCQ+góc PDQ=180 độ

=>PCQD nội tiếp

PCQD nội tiếp

=>góc CDQ=góc CPQ=góc APH

HBDQ nội tiếp

=>góc HDQ=góc CBA

mà góc CBA=góc APH(=90 độ-góc PAH)

nên góc CDQ=góc HDQ

=>DQ là phân giác của góc CDH

2 tháng 4 2016

a)   Xet tam giac COA can tai O(  OA= OC) co CI vua la duong cao vua la trung tuyen ung voi AO nen tam giac OAC deu. Suy ra goc COA bang 60do , suy ra so do cung CA bang 60do. Suy ra goc COB bang 180-60=120 suy ra so do cung CA bang 120. Co: HCA=1/2sd cungCA=60/2=30         (1)

Co goc CHB=1/2(sd cungCB- sd cungCA) =1/2(120-60)=1/2*60=30   (2)

Tu (1); (2) suy ra: tam giac ACH can tai A. Suy ra AC= AH      (3)

Lai co: tam giac CAO deu nen CA= CO         (4)

Tu (3);(4)suy ra CA=CO=AH⏩ tam giac CHO vuong tai C

➡CO vuong goc voi HC tai C

Vay HC la tiep tuyen

b).       Tu giac ACOD la hinh thoi

Tu giac co 4 canh ( CA= CO=OD=DA) bang nhau

c).        

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

NV
22 tháng 4 2023

Đặt chu vi COH là \(P=OC+OH+CH\)

Ta có:

\(P=OC+OH+CH\le OC+\sqrt{2\left(OH^2+CH^2\right)}=OC+\sqrt{2OC^2}=OC\left(1+\sqrt{2}\right)=R\left(1+\sqrt{2}\right)\)

Dấu "=" xảy ra khi \(OH=CH\Rightarrow\Delta OCH\) vuông cân tại H

\(\Rightarrow\widehat{COH}=45^0\) hay C là điểm nằm trên cung AB sao cho OC hợp với AB 1 góc 45 độ

//Phía trên sử dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) để đánh giá

7 tháng 6 2021

a) Ta có: \(\angle ANM+\angle ABM=90+90=180\Rightarrow\) ABMN nội tiếp

b) Ta có: \(cos\angle BOA=\dfrac{OB}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\angle BOA=60\)

Ta có: \(sin\angle BOH=sin60=\dfrac{\sqrt{3}}{2}\Rightarrow\dfrac{BH}{OB}=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow BH=\dfrac{\sqrt{3}}{2}OB=\dfrac{\sqrt{3}}{2}R\)

c) Ta có: \(OB^2=BA.BE\Rightarrow\dfrac{BO}{BE}=\dfrac{BA}{BO}\Rightarrow\dfrac{2BM}{BE}=\dfrac{BA}{\dfrac{BC}{2}}\)

\(\Rightarrow\dfrac{2BM}{BE}=\dfrac{2BA}{BC}\Rightarrow\dfrac{BM}{BE}=\dfrac{BA}{BC}\)

Xét \(\Delta MBE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BM}{BE}=\dfrac{BA}{BC}\\\angle MBE=\angle ABC=90\end{matrix}\right.\)

\(\Rightarrow\Delta MBE\sim\Delta ABC\left(c-g-c\right)\Rightarrow\angle BME=\angle BAC=\angle CMN\) (ABMN nội tiếp)

mà B,M,C thẳng hàng \(\Rightarrow\) E,M,N thẳng hàngundefined

6 tháng 6 2021

a)Vì AB tx (O)

`=>hat{ABO}=90^o`

Vì `MN bot AC`

`=>hat{ANM}=90^o`

Xét tg ABMN có:

`hat{ANM}+hat{ABO}=180^o`

`=>` tg ABMN nt

b)Xét tam giác vg ABO có:

`sinhat{BAO}=(AO)/(BO)=1/2`

`=>hat{BAO}=30^o`

`=>hat{BOA}=90^o-30^o=60^o`

Áp dụng đl pytago vào tam giác vg ABO

`=>AB^2=AO^2-BO^2=3R^2`

`=>AB=sqrt3R=3sqrt3`

Áp dụng htl vào tam giác vuong ABO có đg cao là BH

`=>BH.AO=AB.BO`

`=>BH.2R=sqrt3R.R=sqrt3R^2`

`=>BH=(sqrt3R)/2=(3sqrt3)/2`