Cho P(x) là 1 đa thức có hệ số nguyên có 2016 nghiệm nguyên phân biệt. Đa thức Q(x)=P(x)-1007 có nhiều nhất bao nhiêu nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x
Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~
- Gỉa sử a là nghiệm nguyên của P(X) .
- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)
- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)
Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)
Mà \(154⋮̸3\)
Vậy đa thức P(x) không có nghiệm nguyên .
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)
=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)
Hay 2013=(a−1)(a−2).Q(1)Q(2)
Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )
=> PT vô nghiệm
=> f(x) không có nghiệm nguyên